找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vanishing and Finiteness Results in Geometric Analysis; A Generalization of Stefano Pigola,Alberto G. Setti,Marco Rigoli Book 2008 Birkh?u

[復制鏈接]
樓主: DUMMY
11#
發(fā)表于 2025-3-23 13:29:35 | 只看該作者
12#
發(fā)表于 2025-3-23 14:15:24 | 只看該作者
13#
發(fā)表于 2025-3-23 19:29:20 | 只看該作者
Book 2008resented concern the topology at infinity of submanifolds, L.p. cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for K?hler manifolds...The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form..
14#
發(fā)表于 2025-3-23 22:24:05 | 只看該作者
0743-1643 y of manifolds with positive spectrum, and structure theorems for K?hler manifolds...The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form..978-3-7643-8642-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
15#
發(fā)表于 2025-3-24 06:08:07 | 只看該作者
,Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and K?hlerian geometry, that we shall need in the sequel. In doing so, we do not aim at giving a detailed treatment of the subject, but only to set down notation and relevant results, illustrating some of the computational techniques involved in the proofs.
16#
發(fā)表于 2025-3-24 09:36:41 | 只看該作者
17#
發(fā)表于 2025-3-24 13:46:30 | 只看該作者
Vanishing results, constancy of harmonic maps, the topology at infinity of submanifolds, the .-cohomology, and the structure and rigidity of Riemannian and K?hlerian manifolds (see Sections 6.1, 7.4, 7.5, 7.6, 8.1, and Appendix B).
18#
發(fā)表于 2025-3-24 18:16:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:59 | 只看該作者
Vanishing and Finiteness Results in Geometric Analysis978-3-7643-8642-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
20#
發(fā)表于 2025-3-25 02:59:59 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 01:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盖州市| 新宁县| 望都县| 呼图壁县| 五华县| 乡宁县| 清远市| 万源市| 阿勒泰市| 独山县| 务川| 横山县| 禄劝| 江川县| 武穴市| 九台市| 凉山| 休宁县| 霍山县| 高尔夫| 轮台县| 普洱| 五常市| 怀远县| 石景山区| 安龙县| 伊金霍洛旗| 徐汇区| 磐安县| 永修县| 潜江市| 大冶市| 公主岭市| 达孜县| 长岛县| 巴青县| 盖州市| 巧家县| 西贡区| 临湘市| 扎囊县|