找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vanishing and Finiteness Results in Geometric Analysis; A Generalization of Stefano Pigola,Alberto G. Setti,Marco Rigoli Book 2008 Birkh?u

[復制鏈接]
查看: 46846|回復: 41
樓主
發(fā)表于 2025-3-21 17:53:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Vanishing and Finiteness Results in Geometric Analysis
副標題A Generalization of
編輯Stefano Pigola,Alberto G. Setti,Marco Rigoli
視頻videohttp://file.papertrans.cn/981/980485/980485.mp4
概述Comprehensive account of very recent results in geometric analysis.Essentially self-contained, supplying the necessary background material which is not easily available in book form and presenting muc
叢書名稱Progress in Mathematics
圖書封面Titlebook: Vanishing and Finiteness Results in Geometric Analysis; A Generalization of  Stefano Pigola,Alberto G. Setti,Marco Rigoli Book 2008 Birkh?u
描述.This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory...All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, L.p. cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for K?hler manifolds...The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form..
出版日期Book 2008
關(guān)鍵詞Riemannian geometry; Riemannian manifold; calculus; comparison theorem; differential equation; geometric
版次1
doihttps://doi.org/10.1007/978-3-7643-8642-9
isbn_ebook978-3-7643-8642-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2008
The information of publication is updating

書目名稱Vanishing and Finiteness Results in Geometric Analysis影響因子(影響力)




書目名稱Vanishing and Finiteness Results in Geometric Analysis影響因子(影響力)學科排名




書目名稱Vanishing and Finiteness Results in Geometric Analysis網(wǎng)絡(luò)公開度




書目名稱Vanishing and Finiteness Results in Geometric Analysis網(wǎng)絡(luò)公開度學科排名




書目名稱Vanishing and Finiteness Results in Geometric Analysis被引頻次




書目名稱Vanishing and Finiteness Results in Geometric Analysis被引頻次學科排名




書目名稱Vanishing and Finiteness Results in Geometric Analysis年度引用




書目名稱Vanishing and Finiteness Results in Geometric Analysis年度引用學科排名




書目名稱Vanishing and Finiteness Results in Geometric Analysis讀者反饋




書目名稱Vanishing and Finiteness Results in Geometric Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:33:09 | 只看該作者
地板
發(fā)表于 2025-3-22 06:34:44 | 只看該作者
5#
發(fā)表于 2025-3-22 09:39:05 | 只看該作者
Vanishing results, constancy of harmonic maps, the topology at infinity of submanifolds, the .-cohomology, and the structure and rigidity of Riemannian and K?hlerian manifolds (see Sections 6.1, 7.4, 7.5, 7.6, 8.1, and Appendix B).
6#
發(fā)表于 2025-3-22 16:00:13 | 只看該作者
A finite-dimensionality result,tion . is the norm of the section of a suitable vector bundle. In appropriate circumstances, the theorem guarantees that certain vector subspaces of such sections are trivial, the main geometric assumption being the existence of a positive solution . of the differential inequality . where .(.) is a
7#
發(fā)表于 2025-3-22 19:25:56 | 只看該作者
Applications to harmonic maps,rem which compares with classical work by Schoen and Yau, [146]. Direct inspection shows that our result, emphasizing the role of a suitable Schr?dinger operator related to the Ricci curvature of the domain manifold, unifies in a single statement the situations considered in [146]; see Remark 6.22 b
8#
發(fā)表于 2025-3-22 22:32:10 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:32 | 只看該作者
A finite-dimensionality result,uch sections are trivial, the main geometric assumption being the existence of a positive solution . of the differential inequality . where .(.) is a lower bound for the relevant curvature term. According to Lemma 3.10 this amounts to requiring that the bottom of the spectrum of the Schr?dinger operator ?Δ ? .(.) is non-negative.
10#
發(fā)表于 2025-3-23 08:09:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
兰坪| 安阳县| 霍邱县| 肃北| 调兵山市| 屏南县| 静海县| 北票市| 丽江市| 禹城市| 海宁市| 民权县| 随州市| 连南| 阿巴嘎旗| 彰武县| 绥滨县| 信宜市| 新泰市| 青岛市| 永嘉县| 阜城县| 禄丰县| 临颍县| 昌黎县| 岳池县| 延吉市| 宁河县| 大田县| 宣汉县| 堆龙德庆县| 沾益县| 名山县| 新余市| 旬邑县| 巴彦县| 垦利县| 米易县| 阿图什市| 阜新市| 盱眙县|