找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Using Artificial Neural Networks for Timeseries Smoothing and Forecasting; Case Studies in Econ Jaromír Vrbka Book 2021 The Editor(s) (if a

[復制鏈接]
查看: 41326|回復: 35
樓主
發(fā)表于 2025-3-21 17:52:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting
副標題Case Studies in Econ
編輯Jaromír Vrbka
視頻videohttp://file.papertrans.cn/945/944541/944541.mp4
概述Gives a survey of artificial neural networks that are suitable for timeseries smoothing and forecasting.Offers case studies that can help the users (students, financial experts etc.) to understand the
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Using Artificial Neural Networks for Timeseries Smoothing and Forecasting; Case Studies in Econ Jaromír Vrbka Book 2021 The Editor(s) (if a
描述The aim of this publication is to identify and apply suitable methods for analysing and predicting the time series of gold prices, together with acquainting the reader with the history and characteristics of the methods and with the time series issues in general. Both statistical and econometric methods, and especially artificial intelligence methods, are used in the case studies. The publication presents both traditional and innovative methods on the theoretical level, always accompanied by a case study, i.e. their specific use in practice. Furthermore, a comprehensive comparative analysis of the individual methods is provided. The book is intended for readers from the ranks of academic staff, students of universities of economics, but also the scientists and practitioners dealing with the time series prediction. From the point of view of practical application, it could provide useful information for speculators and traders on financial markets, especially the commodity markets..
出版日期Book 2021
關鍵詞Artificial Neural Networks; Forecasting; Timeseries Smoothing; Timeseries; Statistic Methods
版次1
doihttps://doi.org/10.1007/978-3-030-75649-9
isbn_softcover978-3-030-75651-2
isbn_ebook978-3-030-75649-9Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting影響因子(影響力)




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting影響因子(影響力)學科排名




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting網(wǎng)絡公開度




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting網(wǎng)絡公開度學科排名




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting被引頻次




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting被引頻次學科排名




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting年度引用




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting年度引用學科排名




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting讀者反饋




書目名稱Using Artificial Neural Networks for Timeseries Smoothing and Forecasting讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:35:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:42 | 只看該作者
,Econometrics—Selected Models,Econometrics is currently a rapidly developing field of study, referring not only to common economics (macroeconomy and microeconomy), but also specialized economic areas such as financial and spatial economics.
地板
發(fā)表于 2025-3-22 07:57:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:35:57 | 只看該作者
Comparison of Different Methods,BBasic information related to the artificial neural network method is shown in Fig.?4.1. The predictors in this case are neural networks, the number of test examples is 1221 and the number of training examples is 2442
6#
發(fā)表于 2025-3-22 13:34:15 | 只看該作者
7#
發(fā)表于 2025-3-22 20:23:01 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:47 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:40 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:33 | 只看該作者
https://doi.org/10.1007/978-3-030-75649-9Artificial Neural Networks; Forecasting; Timeseries Smoothing; Timeseries; Statistic Methods
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
抚远县| 达拉特旗| 乃东县| 土默特右旗| 锡林浩特市| 鄂尔多斯市| 兰州市| 垫江县| 镶黄旗| 延津县| 麦盖提县| 漳平市| 双鸭山市| 青田县| 龙泉市| 古交市| 乌拉特后旗| 宽城| 峨山| 南部县| 民权县| 丰原市| 兴文县| 土默特右旗| 和静县| 洱源县| 马公市| 德保县| 上栗县| 忻州市| 庆城县| 凤凰县| 鄂托克旗| 怀化市| 河北区| 永安市| 泾阳县| 汪清县| 义马市| 墨竹工卡县| 察隅县|