找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Using Artificial Neural Networks for Timeseries Smoothing and Forecasting; Case Studies in Econ Jaromír Vrbka Book 2021 The Editor(s) (if a

[復(fù)制鏈接]
查看: 41328|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:52:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting
副標(biāo)題Case Studies in Econ
編輯Jaromír Vrbka
視頻videohttp://file.papertrans.cn/945/944541/944541.mp4
概述Gives a survey of artificial neural networks that are suitable for timeseries smoothing and forecasting.Offers case studies that can help the users (students, financial experts etc.) to understand the
叢書(shū)名稱(chēng)Studies in Computational Intelligence
圖書(shū)封面Titlebook: Using Artificial Neural Networks for Timeseries Smoothing and Forecasting; Case Studies in Econ Jaromír Vrbka Book 2021 The Editor(s) (if a
描述The aim of this publication is to identify and apply suitable methods for analysing and predicting the time series of gold prices, together with acquainting the reader with the history and characteristics of the methods and with the time series issues in general. Both statistical and econometric methods, and especially artificial intelligence methods, are used in the case studies. The publication presents both traditional and innovative methods on the theoretical level, always accompanied by a case study, i.e. their specific use in practice. Furthermore, a comprehensive comparative analysis of the individual methods is provided. The book is intended for readers from the ranks of academic staff, students of universities of economics, but also the scientists and practitioners dealing with the time series prediction. From the point of view of practical application, it could provide useful information for speculators and traders on financial markets, especially the commodity markets..
出版日期Book 2021
關(guān)鍵詞Artificial Neural Networks; Forecasting; Timeseries Smoothing; Timeseries; Statistic Methods
版次1
doihttps://doi.org/10.1007/978-3-030-75649-9
isbn_softcover978-3-030-75651-2
isbn_ebook978-3-030-75649-9Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting影響因子(影響力)




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting被引頻次




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting被引頻次學(xué)科排名




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting年度引用




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting年度引用學(xué)科排名




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting讀者反饋




書(shū)目名稱(chēng)Using Artificial Neural Networks for Timeseries Smoothing and Forecasting讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:42 | 只看該作者
,Econometrics—Selected Models,Econometrics is currently a rapidly developing field of study, referring not only to common economics (macroeconomy and microeconomy), but also specialized economic areas such as financial and spatial economics.
地板
發(fā)表于 2025-3-22 07:57:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:35:57 | 只看該作者
Comparison of Different Methods,BBasic information related to the artificial neural network method is shown in Fig.?4.1. The predictors in this case are neural networks, the number of test examples is 1221 and the number of training examples is 2442
6#
發(fā)表于 2025-3-22 13:34:15 | 只看該作者
7#
發(fā)表于 2025-3-22 20:23:01 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:47 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:40 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:33 | 只看該作者
https://doi.org/10.1007/978-3-030-75649-9Artificial Neural Networks; Forecasting; Timeseries Smoothing; Timeseries; Statistic Methods
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治多县| 怀仁县| 临泉县| 清新县| 阜康市| 砚山县| 会东县| 揭西县| 阿合奇县| 神木县| 通河县| 西昌市| 靖边县| 鄯善县| 醴陵市| 沛县| 资兴市| 泊头市| 郎溪县| 疏附县| 石林| 博乐市| 志丹县| 呼图壁县| 南通市| 奉贤区| 大姚县| 忻州市| 甘孜县| 余姚市| 隆安县| 原平市| 朝阳市| 红安县| 九龙城区| 松阳县| 乐山市| 仁怀市| 隆子县| 武清区| 唐海县|