找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Unity, Truth and the Liar; The Modern Relevance Shahid Rahman,Tero Tulenheimo,Emmanuel Genot Book 2008 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: fumble
31#
發(fā)表于 2025-3-26 22:38:02 | 只看該作者
32#
發(fā)表于 2025-3-27 01:11:05 | 只看該作者
Doubting Thomas: From Bradwardine Back to Anon a truth? An author writing more than a century before Bradwardine thinks the latter, holding that the Liar utterance does not express a proposition. Like Read, Bradwardine repudiates this view. But criticisms of his own theory keep leading us in the direction of that earlier theory. It is the earlier theory that is the right one.
33#
發(fā)表于 2025-3-27 05:45:06 | 只看該作者
Comments on Stephen Read’s “The Truth-Schema and the Liar”e that applies meaningfully to the sentences of that very language usually lead either to inconsistency (because of some version of semantic paradox) or else to a theory that fails to classify some sentences as true or not true. I will argue that Read‘s account of truth falls into the latter category.
34#
發(fā)表于 2025-3-27 10:01:22 | 只看該作者
Models for Liars in Bradwardine’s Theory of Truth that there are models in which this conclusion fails. This should help us elucidate the hidden assumptions required to underpin Bradwardine‘s argument, and to make explicit the content of Bradwardine‘s theory of truth.
35#
發(fā)表于 2025-3-27 14:25:36 | 只看該作者
The Liar Cannot Be Solvedy to shed light on some weak points in Read‘s argument, then I present my own arguments to the effect that any revision of Tarski‘s truth-schema can, in principle, be only a part of the solution to the Liar paradox.
36#
發(fā)表于 2025-3-27 19:40:11 | 只看該作者
2214-9775 ussion about truth theory and paradoxes from a semantical, lAndinmy haste, I said: “Allmenare Liars” 1 —Psalms 116:11 The Original Lie Philosophical analysis often reveals and seldom solves paradoxes. To quote Stephen Read: A paradox arises when an unacceptable conclusion is supported by a plausible
37#
發(fā)表于 2025-3-28 00:10:33 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:57 | 只看該作者
39#
發(fā)表于 2025-3-28 09:16:25 | 只看該作者
Read and Indirect Revengecertain facts about truth and is, in turn, supported by its attempt to resolve paradoxes that challenge it. Why adopt Read’s favoured theory of truth (which theory I will discuss below)? Are the extant theories inadequate, or otherwise incorrect? Read claims that they are.
40#
發(fā)表于 2025-3-28 10:46:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松阳县| 灵宝市| 汕头市| 凯里市| 门源| 鹤壁市| 鲁甸县| 屯门区| 孙吴县| 新田县| 松潘县| 大邑县| 琼中| 桃园县| 剑川县| 大新县| 栾川县| 启东市| 游戏| 谢通门县| 常宁市| 盐城市| 东乡族自治县| 津市市| 吴江市| 会昌县| 隆化县| 宁阳县| 长武县| 望都县| 临清市| 景东| 柘荣县| 梁河县| 麻江县| 岑溪市| 古浪县| 平谷区| 彩票| 花莲县| 滦南县|