找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unbounded Self-adjoint Operators on Hilbert Space; Konrad Schmüdgen Textbook 2012 Springer Science+Business Media Dordrecht 2012 Banach sp

[復(fù)制鏈接]
樓主: 代表
51#
發(fā)表于 2025-3-30 09:26:15 | 只看該作者
Closed and Adjoint Operatorsrs that cover almost all interesting unbounded operators occurring in applications. The Hilbert space scalar product allows one to define the adjoint of a densely defined linear operator. Various characterizations of closed and closable operators and basic results on adjoint operators are derived. T
52#
發(fā)表于 2025-3-30 16:07:00 | 只看該作者
The Spectrum of a Closed Operatorperator theory. In the first section, regular points and defect numbers of linear operators are defined and studied, and the Krasnoselskii–Krein theorem about the constancy of defect numbers on connected components of the regularity domain is proved. These results are used to derive basic properties
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开鲁县| 兴城市| 万盛区| 友谊县| 遂溪县| 通渭县| 桃园县| 贵德县| 固阳县| 浮梁县| 将乐县| 西宁市| 绥滨县| 全州县| 岱山县| 旬邑县| 平顺县| 陆川县| 黔东| 社旗县| 乌审旗| 平湖市| 册亨县| 诸城市| 博湖县| 玉田县| 苍溪县| 天镇县| 阳新县| 东山县| 金堂县| 新建县| 通河县| 长葛市| 宜宾县| 石门县| 平果县| 古丈县| 金华市| 武乡县| 平谷区|