找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unbounded Self-adjoint Operators on Hilbert Space; Konrad Schmüdgen Textbook 2012 Springer Science+Business Media Dordrecht 2012 Banach sp

[復(fù)制鏈接]
樓主: 代表
41#
發(fā)表于 2025-3-28 16:56:58 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/u/image/941052.jpg
42#
發(fā)表于 2025-3-28 22:49:44 | 只看該作者
https://doi.org/10.1007/978-94-007-4753-1Banach space; Hamburger moment problem; Hilbert space; Perturbation of self-adjointness; Schr?dinger ope
43#
發(fā)表于 2025-3-29 00:42:12 | 只看該作者
44#
發(fā)表于 2025-3-29 05:32:53 | 只看該作者
978-94-007-9741-3Springer Science+Business Media Dordrecht 2012
45#
發(fā)表于 2025-3-29 10:55:27 | 只看該作者
Unbounded Self-adjoint Operators on Hilbert Space978-94-007-4753-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
46#
發(fā)表于 2025-3-29 11:59:21 | 只看該作者
Sectorial Forms and ,-Sectorial Operatorsdefined closed sectorial forms. The latter gives a one-to-one correspondence between densely defined closed sectorial forms and .-sectorial operators. Finally, this form representation theorem is applied to second-order elliptic differential operators.
47#
發(fā)表于 2025-3-29 17:34:17 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:17 | 只看該作者
The Spectrum of a Closed Operator of the spectrum and the resolvent of closed operators. Parts of the spectrum are discussed. The two resolvent identities, the spectral radius, and the analyticity of the resolvent are treated. Spectra and formulas for the resolvents of the differentiation operator . on various intervals are determined.
49#
發(fā)表于 2025-3-30 03:23:04 | 只看該作者
50#
發(fā)表于 2025-3-30 04:44:58 | 只看該作者
Discrete Spectra of Self-adjoint Operatorsare briefly discussed. Another section contains some results concerning the existence of positive or negative eigenvalues of self-adjoint operators and Schr?dinger operators. In the final section, Weyl’s classical asymptotic formula for the eigenvalues of the Dirichlet Laplacian on a bounded open Jordan measurable subset of ?. is proved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳市| 肃北| 静安区| 磴口县| 景德镇市| 应用必备| 阳高县| 四子王旗| 长顺县| 柳林县| 永吉县| 英超| 那曲县| 汕头市| 株洲市| 邹平县| 盐边县| 金乡县| 南通市| 神池县| 武功县| 全椒县| 鄯善县| 温州市| 大姚县| 高邮市| 宁德市| 稻城县| 若羌县| 大石桥市| 崇义县| 都江堰市| 拉孜县| 佛教| 文安县| 铁岭县| 辽中县| 历史| 府谷县| 洛隆县| 永德县|