找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unbounded Self-adjoint Operators on Hilbert Space; Konrad Schmüdgen Textbook 2012 Springer Science+Business Media Dordrecht 2012 Banach sp

[復(fù)制鏈接]
樓主: 代表
41#
發(fā)表于 2025-3-28 16:56:58 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/u/image/941052.jpg
42#
發(fā)表于 2025-3-28 22:49:44 | 只看該作者
https://doi.org/10.1007/978-94-007-4753-1Banach space; Hamburger moment problem; Hilbert space; Perturbation of self-adjointness; Schr?dinger ope
43#
發(fā)表于 2025-3-29 00:42:12 | 只看該作者
44#
發(fā)表于 2025-3-29 05:32:53 | 只看該作者
978-94-007-9741-3Springer Science+Business Media Dordrecht 2012
45#
發(fā)表于 2025-3-29 10:55:27 | 只看該作者
Unbounded Self-adjoint Operators on Hilbert Space978-94-007-4753-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
46#
發(fā)表于 2025-3-29 11:59:21 | 只看該作者
Sectorial Forms and ,-Sectorial Operatorsdefined closed sectorial forms. The latter gives a one-to-one correspondence between densely defined closed sectorial forms and .-sectorial operators. Finally, this form representation theorem is applied to second-order elliptic differential operators.
47#
發(fā)表于 2025-3-29 17:34:17 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:17 | 只看該作者
The Spectrum of a Closed Operator of the spectrum and the resolvent of closed operators. Parts of the spectrum are discussed. The two resolvent identities, the spectral radius, and the analyticity of the resolvent are treated. Spectra and formulas for the resolvents of the differentiation operator . on various intervals are determined.
49#
發(fā)表于 2025-3-30 03:23:04 | 只看該作者
50#
發(fā)表于 2025-3-30 04:44:58 | 只看該作者
Discrete Spectra of Self-adjoint Operatorsare briefly discussed. Another section contains some results concerning the existence of positive or negative eigenvalues of self-adjoint operators and Schr?dinger operators. In the final section, Weyl’s classical asymptotic formula for the eigenvalues of the Dirichlet Laplacian on a bounded open Jordan measurable subset of ?. is proved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 南阳市| 甘德县| 南汇区| 天水市| 大埔县| 霍邱县| 枣阳市| 通山县| 长岭县| 铁力市| 襄城县| 陈巴尔虎旗| 岚皋县| 景宁| 嘉峪关市| 仲巴县| 宜章县| 忻州市| 克拉玛依市| 雅江县| 丹东市| 西宁市| 嘉善县| 家居| 会理县| 新安县| 平利县| 玉田县| 汝南县| 志丹县| 姜堰市| 嵊州市| 宁远县| 洞口县| 翁源县| 上林县| 太康县| 上杭县| 凌云县| 北碚区|