找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Twisted Isospectrality, Homological Wideness, and Isometry; A Sample of Algebrai Gunther Cornelissen,Norbert Peyerimhoff Book‘‘‘‘‘‘‘‘ 2023

[復(fù)制鏈接]
查看: 39985|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:56:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Twisted Isospectrality, Homological Wideness, and Isometry
副標(biāo)題A Sample of Algebrai
編輯Gunther Cornelissen,Norbert Peyerimhoff
視頻videohttp://file.papertrans.cn/932/931261/931261.mp4
概述This book is open access, which means that you have free and unlimited access.Offers a solid background on the theory of twisting Laplace operators on Riemannian manifolds.Includes many examples and s
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Twisted Isospectrality, Homological Wideness, and Isometry; A Sample of Algebrai Gunther Cornelissen,Norbert Peyerimhoff Book‘‘‘‘‘‘‘‘ 2023
描述The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether one can find finitely many natural operators that determine whether two such manifolds are isometric (coverings)..The methods outlined in the book fit into the tradition of the famous work of Sunada on the construction of isospectral, non-isometric manifolds, and thus do .not. focus on analytic techniques, but rather on algebraic methods: in particular, the analogy with constructions in number theory, methods from representation theory, and from algebraic topology..The main goal of the book is to present the construction of finitely many “twisted” Laplace operators whose spectrum determines covering equivalence of two Riemannian manifolds..The book has a leisure pace and presents details and examples that are hard to find in the literature, concerning: fiber products of manifolds and orbifolds, the distinction between the spectrum and the spectral zeta function for general operators, stron
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Riemannian manifolds; twisted Laplacian; Sunada theory; spectral zeta function; finite group actions on
版次1
doihttps://doi.org/10.1007/978-3-031-27704-7
isbn_softcover978-3-031-27703-0
isbn_ebook978-3-031-27704-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2023
The information of publication is updating

書目名稱Twisted Isospectrality, Homological Wideness, and Isometry影響因子(影響力)




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry影響因子(影響力)學(xué)科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry網(wǎng)絡(luò)公開度




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry被引頻次




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry被引頻次學(xué)科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry年度引用




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry年度引用學(xué)科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry讀者反饋




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:52 | 只看該作者
第131261主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:30:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:17:47 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:13:52 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:39:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:15:35 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:04:47 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:20:43 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:58:07 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇左市| 两当县| 汉寿县| 含山县| 娄烦县| 建始县| 灯塔市| 古交市| 永宁县| 罗城| 定兴县| 昌平区| 宝鸡市| 尖扎县| 台南县| 兴文县| 巩义市| 康保县| 宜阳县| 和硕县| 通许县| 海原县| 莆田市| 安新县| 东海县| 潮安县| 贵南县| 城市| 沛县| 泸定县| 微博| 拜城县| 敦煌市| 普兰店市| 甘孜县| 邯郸市| 甘德县| 柳江县| 饶河县| 龙海市| 莲花县|