找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Twisted Isospectrality, Homological Wideness, and Isometry; A Sample of Algebrai Gunther Cornelissen,Norbert Peyerimhoff Book‘‘‘‘‘‘‘‘ 2023

[復制鏈接]
查看: 39989|回復: 35
樓主
發(fā)表于 2025-3-21 18:56:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Twisted Isospectrality, Homological Wideness, and Isometry
副標題A Sample of Algebrai
編輯Gunther Cornelissen,Norbert Peyerimhoff
視頻videohttp://file.papertrans.cn/932/931261/931261.mp4
概述This book is open access, which means that you have free and unlimited access.Offers a solid background on the theory of twisting Laplace operators on Riemannian manifolds.Includes many examples and s
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Twisted Isospectrality, Homological Wideness, and Isometry; A Sample of Algebrai Gunther Cornelissen,Norbert Peyerimhoff Book‘‘‘‘‘‘‘‘ 2023
描述The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether one can find finitely many natural operators that determine whether two such manifolds are isometric (coverings)..The methods outlined in the book fit into the tradition of the famous work of Sunada on the construction of isospectral, non-isometric manifolds, and thus do .not. focus on analytic techniques, but rather on algebraic methods: in particular, the analogy with constructions in number theory, methods from representation theory, and from algebraic topology..The main goal of the book is to present the construction of finitely many “twisted” Laplace operators whose spectrum determines covering equivalence of two Riemannian manifolds..The book has a leisure pace and presents details and examples that are hard to find in the literature, concerning: fiber products of manifolds and orbifolds, the distinction between the spectrum and the spectral zeta function for general operators, stron
出版日期Book‘‘‘‘‘‘‘‘ 2023
關鍵詞Riemannian manifolds; twisted Laplacian; Sunada theory; spectral zeta function; finite group actions on
版次1
doihttps://doi.org/10.1007/978-3-031-27704-7
isbn_softcover978-3-031-27703-0
isbn_ebook978-3-031-27704-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2023
The information of publication is updating

書目名稱Twisted Isospectrality, Homological Wideness, and Isometry影響因子(影響力)




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry影響因子(影響力)學科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry網絡公開度




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry網絡公開度學科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry被引頻次




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry被引頻次學科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry年度引用




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry年度引用學科排名




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry讀者反饋




書目名稱Twisted Isospectrality, Homological Wideness, and Isometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:29:52 | 只看該作者
第131261主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:30:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:17:47 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:13:52 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:39:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:15:35 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:04:47 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:20:43 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:58:07 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
甘孜县| 青阳县| 原平市| 斗六市| 思南县| 郧西县| 左贡县| 正蓝旗| 海城市| 龙南县| 平湖市| 大石桥市| 铜陵市| 长岭县| 彰化市| 蒲城县| 高要市| 吉安市| 会宁县| 英吉沙县| 龙口市| 四平市| 阳山县| 香港| 宁国市| 仪陇县| 闸北区| 璧山县| 和林格尔县| 大荔县| 张家川| 眉山市| 剑阁县| 镇沅| 和硕县| 邢台县| 龙州县| 三台县| 屯昌县| 逊克县| 青冈县|