找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in Extrinsic Geometry of Codimension-One Foliations; Vladimir Rovenski,Pawe? Walczak Book 2011 Vladimir Rovenski, Pawe? Walczak 201

[復(fù)制鏈接]
查看: 27132|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:30:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations
編輯Vladimir Rovenski,Pawe? Walczak
視頻videohttp://file.papertrans.cn/927/926164/926164.mp4
概述New topic of ‘foliation with a time-dependent metric‘ is developed.Presents new research tools in geometry of foliations (Extrinsic Geometric Flow).Presents examples and open problems for foliated sur
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Topics in Extrinsic Geometry of Codimension-One Foliations;  Vladimir Rovenski,Pawe? Walczak Book 2011 Vladimir Rovenski, Pawe? Walczak 201
描述.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator..?.The central topic of this book is .Extrinsic Geometric Flow .(EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs .Variational Formulae., revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of
出版日期Book 2011
關(guān)鍵詞foliation of codimension one; geometric flow; integral formula; mean curvatures; variation formula; parti
版次1
doihttps://doi.org/10.1007/978-1-4419-9908-5
isbn_softcover978-1-4419-9907-8
isbn_ebook978-1-4419-9908-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightVladimir Rovenski, Pawe? Walczak 2011
The information of publication is updating

書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations影響因子(影響力)




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations影響因子(影響力)學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations網(wǎng)絡(luò)公開度




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations被引頻次




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations被引頻次學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations年度引用




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations年度引用學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations讀者反饋




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:21 | 只看該作者
? Preclinical and clinical researchers now have the opportunity to confirm their hypotheses and the pharmaceutical industry may be able to develop really novel classes of therape978-3-642-44547-7978-3-642-25761-2Series ISSN 0171-2004 Series E-ISSN 1865-0325
板凳
發(fā)表于 2025-3-22 02:58:31 | 只看該作者
2191-8198 es of foliations. To develop EGF, one needs .Variational Formulae., revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of 978-1-4419-9907-8978-1-4419-9908-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
地板
發(fā)表于 2025-3-22 08:00:21 | 只看該作者
5#
發(fā)表于 2025-3-22 10:37:08 | 只看該作者
Book 2011F) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs .Variational Formulae., revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of
6#
發(fā)表于 2025-3-22 16:56:08 | 只看該作者
Vladimir Rovenski,Pawe? Walczakacceptance and clinical use; pinhole IOLs are also available to improve pseudoaccommodation and to help patients with irregular corneas; supplementary IOLs are challenging the very concept of IOL selection and will be more and more accepted in the near future.
7#
發(fā)表于 2025-3-22 18:56:38 | 只看該作者
Vladimir Rovenski,Pawe? Walczakthese impressive advances no change in survival expectancy of patients with osteosarcoma during the past 40 years has occurred. There have been no new chemotherapeutic agents effective in addressing disease that is resistant to current agents; the few that have been introduced await further study to
8#
發(fā)表于 2025-3-22 21:46:53 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:52 | 只看該作者
Vladimir Rovenski,Pawe? Walczak century. The first agents that held promise were doxorubicin and high-dose methotrexate with leucovorin (citrovorin factor) in the mid-1970s. Since then, other agents that can eliminate or cause regression of tumor have been discovered: cis-diamminedichloroplatinum II (cisplatin) and the oxazaphosp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晴隆县| 乌兰浩特市| 大城县| 锦州市| 桐城市| 乌拉特中旗| 吴旗县| 定南县| 康乐县| 大余县| 且末县| 五常市| 新昌县| 漳平市| 平潭县| 邓州市| 叶城县| 宁乡县| 福安市| 泊头市| 九龙城区| 玉树县| 英德市| 明水县| 岱山县| 宾川县| 稻城县| 长宁县| 茶陵县| 栾城县| 琼结县| 永嘉县| 乐业县| 克拉玛依市| 沁阳市| 双柏县| 涿鹿县| 韶山市| 井陉县| 民乐县| 剑河县|