找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in Extrinsic Geometry of Codimension-One Foliations; Vladimir Rovenski,Pawe? Walczak Book 2011 Vladimir Rovenski, Pawe? Walczak 201

[復(fù)制鏈接]
查看: 27131|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:30:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations
編輯Vladimir Rovenski,Pawe? Walczak
視頻videohttp://file.papertrans.cn/927/926164/926164.mp4
概述New topic of ‘foliation with a time-dependent metric‘ is developed.Presents new research tools in geometry of foliations (Extrinsic Geometric Flow).Presents examples and open problems for foliated sur
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Topics in Extrinsic Geometry of Codimension-One Foliations;  Vladimir Rovenski,Pawe? Walczak Book 2011 Vladimir Rovenski, Pawe? Walczak 201
描述.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator..?.The central topic of this book is .Extrinsic Geometric Flow .(EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs .Variational Formulae., revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of
出版日期Book 2011
關(guān)鍵詞foliation of codimension one; geometric flow; integral formula; mean curvatures; variation formula; parti
版次1
doihttps://doi.org/10.1007/978-1-4419-9908-5
isbn_softcover978-1-4419-9907-8
isbn_ebook978-1-4419-9908-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightVladimir Rovenski, Pawe? Walczak 2011
The information of publication is updating

書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations影響因子(影響力)




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations影響因子(影響力)學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations網(wǎng)絡(luò)公開度




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations被引頻次




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations被引頻次學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations年度引用




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations年度引用學(xué)科排名




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations讀者反饋




書目名稱Topics in Extrinsic Geometry of Codimension-One Foliations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:21 | 只看該作者
? Preclinical and clinical researchers now have the opportunity to confirm their hypotheses and the pharmaceutical industry may be able to develop really novel classes of therape978-3-642-44547-7978-3-642-25761-2Series ISSN 0171-2004 Series E-ISSN 1865-0325
板凳
發(fā)表于 2025-3-22 02:58:31 | 只看該作者
2191-8198 es of foliations. To develop EGF, one needs .Variational Formulae., revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of 978-1-4419-9907-8978-1-4419-9908-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
地板
發(fā)表于 2025-3-22 08:00:21 | 只看該作者
5#
發(fā)表于 2025-3-22 10:37:08 | 只看該作者
Book 2011F) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs .Variational Formulae., revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of
6#
發(fā)表于 2025-3-22 16:56:08 | 只看該作者
Vladimir Rovenski,Pawe? Walczakacceptance and clinical use; pinhole IOLs are also available to improve pseudoaccommodation and to help patients with irregular corneas; supplementary IOLs are challenging the very concept of IOL selection and will be more and more accepted in the near future.
7#
發(fā)表于 2025-3-22 18:56:38 | 只看該作者
Vladimir Rovenski,Pawe? Walczakthese impressive advances no change in survival expectancy of patients with osteosarcoma during the past 40 years has occurred. There have been no new chemotherapeutic agents effective in addressing disease that is resistant to current agents; the few that have been introduced await further study to
8#
發(fā)表于 2025-3-22 21:46:53 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:52 | 只看該作者
Vladimir Rovenski,Pawe? Walczak century. The first agents that held promise were doxorubicin and high-dose methotrexate with leucovorin (citrovorin factor) in the mid-1970s. Since then, other agents that can eliminate or cause regression of tumor have been discovered: cis-diamminedichloroplatinum II (cisplatin) and the oxazaphosp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 泰州市| 惠水县| 湖口县| 南充市| 阳高县| 乌兰县| 慈溪市| 论坛| 万全县| 宁武县| 灌云县| 全南县| 威海市| 滁州市| 宜丰县| 土默特左旗| 雷山县| 蒲城县| 河南省| 五家渠市| 陕西省| 阿鲁科尔沁旗| 江北区| 炎陵县| 容城县| 武夷山市| 沿河| 济宁市| 山丹县| 阜南县| 屏南县| 洞头县| 池州市| 连江县| 深泽县| 南通市| 广丰县| 浦江县| 石狮市| 长治县|