找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Theory of Lattice-Ordered Groups; V. M. Kopytov,N. Ya. Medvedev Book 1994 Springer Science+Business Media Dordrecht 1994 Group theory.

[復制鏈接]
查看: 28597|回復: 35
樓主
發(fā)表于 2025-3-21 19:25:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Theory of Lattice-Ordered Groups
編輯V. M. Kopytov,N. Ya. Medvedev
視頻videohttp://file.papertrans.cn/922/921141/921141.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: The Theory of Lattice-Ordered Groups;  V. M. Kopytov,N. Ya. Medvedev Book 1994 Springer Science+Business Media Dordrecht 1994 Group theory.
描述A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat- ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al- gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc- tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal‘cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam- ple, partially ordered groups with interpolation property were intro- duced in F. Riesz‘s fundamental paper [1] as a key to his investigations of partially ordered real vec
出版日期Book 1994
關鍵詞Group theory; Lattice; algebra; semigroup
版次1
doihttps://doi.org/10.1007/978-94-015-8304-6
isbn_softcover978-90-481-4474-7
isbn_ebook978-94-015-8304-6
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

書目名稱The Theory of Lattice-Ordered Groups影響因子(影響力)




書目名稱The Theory of Lattice-Ordered Groups影響因子(影響力)學科排名




書目名稱The Theory of Lattice-Ordered Groups網(wǎng)絡公開度




書目名稱The Theory of Lattice-Ordered Groups網(wǎng)絡公開度學科排名




書目名稱The Theory of Lattice-Ordered Groups被引頻次




書目名稱The Theory of Lattice-Ordered Groups被引頻次學科排名




書目名稱The Theory of Lattice-Ordered Groups年度引用




書目名稱The Theory of Lattice-Ordered Groups年度引用學科排名




書目名稱The Theory of Lattice-Ordered Groups讀者反饋




書目名稱The Theory of Lattice-Ordered Groups讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:09:57 | 只看該作者
第121141主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:04:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:42:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:04:39 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:14:40 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:12:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:46:52 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:55:19 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:42:26 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
九江市| 新营市| 新密市| 景宁| 金乡县| 朔州市| 三河市| 洛川县| 育儿| 西乌珠穆沁旗| 广元市| 天峻县| 汉中市| 姚安县| 兴宁市| 安阳县| 彝良县| 马关县| 荔波县| 乃东县| 鹤峰县| 巴林右旗| 鄂尔多斯市| 泗阳县| 石河子市| 乐至县| 大悟县| 怀安县| 大理市| 景谷| 宜都市| 临夏市| 大洼县| 莆田市| 昭通市| 安顺市| 大城县| 双江| 定西市| 涿鹿县| 视频|