找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Theory of Lattice-Ordered Groups; V. M. Kopytov,N. Ya. Medvedev Book 1994 Springer Science+Business Media Dordrecht 1994 Group theory.

[復(fù)制鏈接]
查看: 28602|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:25:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Theory of Lattice-Ordered Groups
編輯V. M. Kopytov,N. Ya. Medvedev
視頻videohttp://file.papertrans.cn/922/921141/921141.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: The Theory of Lattice-Ordered Groups;  V. M. Kopytov,N. Ya. Medvedev Book 1994 Springer Science+Business Media Dordrecht 1994 Group theory.
描述A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat- ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al- gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc- tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal‘cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam- ple, partially ordered groups with interpolation property were intro- duced in F. Riesz‘s fundamental paper [1] as a key to his investigations of partially ordered real vec
出版日期Book 1994
關(guān)鍵詞Group theory; Lattice; algebra; semigroup
版次1
doihttps://doi.org/10.1007/978-94-015-8304-6
isbn_softcover978-90-481-4474-7
isbn_ebook978-94-015-8304-6
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

書目名稱The Theory of Lattice-Ordered Groups影響因子(影響力)




書目名稱The Theory of Lattice-Ordered Groups影響因子(影響力)學(xué)科排名




書目名稱The Theory of Lattice-Ordered Groups網(wǎng)絡(luò)公開度




書目名稱The Theory of Lattice-Ordered Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Theory of Lattice-Ordered Groups被引頻次




書目名稱The Theory of Lattice-Ordered Groups被引頻次學(xué)科排名




書目名稱The Theory of Lattice-Ordered Groups年度引用




書目名稱The Theory of Lattice-Ordered Groups年度引用學(xué)科排名




書目名稱The Theory of Lattice-Ordered Groups讀者反饋




書目名稱The Theory of Lattice-Ordered Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:57 | 只看該作者
第121141主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:04:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:42:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:04:39 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:14:40 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:12:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:46:52 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:55:19 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:42:26 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆尧县| 历史| 太谷县| 通江县| 玉屏| 鲁山县| 孟连| 丽江市| 石景山区| 吉林省| 郧西县| 枝江市| 墨玉县| 遂溪县| 萨嘎县| 普安县| 印江| 邯郸县| 九江市| 溧阳市| 江城| 凤庆县| 天祝| 阳高县| 修水县| 陆丰市| 左云县| 溧水县| 上蔡县| 张北县| 商河县| 新田县| 台北市| 东海县| 天镇县| 丹阳市| 青岛市| 大荔县| 西充县| 道真| 永平县|