找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Hardy Space of a Slit Domain; Alexandru Aleman,William T. Ross,Nathan S. Feldman Book 2009Latest edition Birkh?user Basel 2009 Hardy S

[復(fù)制鏈接]
查看: 50440|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:46:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Hardy Space of a Slit Domain
編輯Alexandru Aleman,William T. Ross,Nathan S. Feldman
視頻videohttp://file.papertrans.cn/912/911119/911119.mp4
概述Only book which covers Hardy spaces of slit domains.Includes supplementary material:
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: The Hardy Space of a Slit Domain;  Alexandru Aleman,William T. Ross,Nathan S. Feldman Book 2009Latest edition Birkh?user Basel 2009 Hardy S
描述If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .
出版日期Book 2009Latest edition
關(guān)鍵詞Hardy Space; Invariant; Invariant subspace; Multiplication; Slit plane; character; essential spectrum; func
版次1
doihttps://doi.org/10.1007/978-3-0346-0098-9
isbn_softcover978-3-0346-0097-2
isbn_ebook978-3-0346-0098-9Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱The Hardy Space of a Slit Domain影響因子(影響力)




書目名稱The Hardy Space of a Slit Domain影響因子(影響力)學(xué)科排名




書目名稱The Hardy Space of a Slit Domain網(wǎng)絡(luò)公開度




書目名稱The Hardy Space of a Slit Domain網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Hardy Space of a Slit Domain被引頻次




書目名稱The Hardy Space of a Slit Domain被引頻次學(xué)科排名




書目名稱The Hardy Space of a Slit Domain年度引用




書目名稱The Hardy Space of a Slit Domain年度引用學(xué)科排名




書目名稱The Hardy Space of a Slit Domain讀者反饋




書目名稱The Hardy Space of a Slit Domain讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:09:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:42:55 | 只看該作者
6#
發(fā)表于 2025-3-22 14:54:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:44:36 | 只看該作者
Alexandru Aleman,William T. Ross,Nathan S. FeldmanOnly book which covers Hardy spaces of slit domains.Includes supplementary material:
8#
發(fā)表于 2025-3-22 23:13:28 | 只看該作者
Book 2009Latest edition ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space
9#
發(fā)表于 2025-3-23 04:06:40 | 只看該作者
1660-8046 near operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operato
10#
發(fā)表于 2025-3-23 07:43:03 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱西市| 八宿县| 嘉祥县| 阜宁县| 三都| 青浦区| 海丰县| 涟水县| 沅江市| 思茅市| 西乌珠穆沁旗| 桂阳县| 溧阳市| 永和县| 金华市| 新化县| 兰考县| 奉新县| 牙克石市| 榆社县| 徐水县| 鄯善县| 广水市| 肥乡县| 盐边县| 金溪县| 南溪县| 会宁县| 金山区| 东平县| 内黄县| 岑溪市| 丰宁| 绍兴市| 镇江市| 宜兴市| 芜湖市| 渑池县| 荆州市| 新密市| 建阳市|