找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Hardy Space of a Slit Domain; Alexandru Aleman,William T. Ross,Nathan S. Feldman Book 2009Latest edition Birkh?user Basel 2009 Hardy S

[復制鏈接]
查看: 50444|回復: 35
樓主
發(fā)表于 2025-3-21 16:46:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Hardy Space of a Slit Domain
編輯Alexandru Aleman,William T. Ross,Nathan S. Feldman
視頻videohttp://file.papertrans.cn/912/911119/911119.mp4
概述Only book which covers Hardy spaces of slit domains.Includes supplementary material:
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: The Hardy Space of a Slit Domain;  Alexandru Aleman,William T. Ross,Nathan S. Feldman Book 2009Latest edition Birkh?user Basel 2009 Hardy S
描述If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .
出版日期Book 2009Latest edition
關鍵詞Hardy Space; Invariant; Invariant subspace; Multiplication; Slit plane; character; essential spectrum; func
版次1
doihttps://doi.org/10.1007/978-3-0346-0098-9
isbn_softcover978-3-0346-0097-2
isbn_ebook978-3-0346-0098-9Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱The Hardy Space of a Slit Domain影響因子(影響力)




書目名稱The Hardy Space of a Slit Domain影響因子(影響力)學科排名




書目名稱The Hardy Space of a Slit Domain網絡公開度




書目名稱The Hardy Space of a Slit Domain網絡公開度學科排名




書目名稱The Hardy Space of a Slit Domain被引頻次




書目名稱The Hardy Space of a Slit Domain被引頻次學科排名




書目名稱The Hardy Space of a Slit Domain年度引用




書目名稱The Hardy Space of a Slit Domain年度引用學科排名




書目名稱The Hardy Space of a Slit Domain讀者反饋




書目名稱The Hardy Space of a Slit Domain讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:10:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:09:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:42:55 | 只看該作者
6#
發(fā)表于 2025-3-22 14:54:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:44:36 | 只看該作者
Alexandru Aleman,William T. Ross,Nathan S. FeldmanOnly book which covers Hardy spaces of slit domains.Includes supplementary material:
8#
發(fā)表于 2025-3-22 23:13:28 | 只看該作者
Book 2009Latest edition ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space
9#
發(fā)表于 2025-3-23 04:06:40 | 只看該作者
1660-8046 near operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operato
10#
發(fā)表于 2025-3-23 07:43:03 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 00:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青阳县| 霍山县| 新绛县| 拜泉县| 连城县| 绿春县| 青浦区| 新平| 黑河市| 平泉县| 且末县| 景谷| 诏安县| 桂林市| 桓台县| 望谟县| 红河县| 河源市| 汉川市| 伊宁市| 醴陵市| 利川市| 莫力| 开封市| 合肥市| 武安市| 康乐县| 漳浦县| 澄迈县| 定西市| 连城县| 阳山县| 大新县| 龙门县| 临猗县| 灵丘县| 临汾市| 星座| 泗阳县| 辰溪县| 罗江县|