找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Bochner-Martinelli Integral and Its Applications; Alexander M. Kytmanov Book 1995 Birkh?user Verlag 1995 Complex analysis.derivative.h

[復(fù)制鏈接]
查看: 19327|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:01:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Bochner-Martinelli Integral and Its Applications
編輯Alexander M. Kytmanov
視頻videohttp://file.papertrans.cn/906/905312/905312.mp4
圖書封面Titlebook: The Bochner-Martinelli Integral and Its Applications;  Alexander M. Kytmanov Book 1995 Birkh?user Verlag 1995 Complex analysis.derivative.h
描述The Bochner-Martinelli integral representation for holomorphic functions or‘sev- eral complex variables (which has already become classical) appeared in the works of Martinelli and Bochner at the beginning of the 1940‘s. It was the first essen- tially multidimensional representation in which the integration takes place over the whole boundary of the domain. This integral representation has a universal 1 kernel (not depending on the form of the domain), like the Cauchy kernel in e . However, in en when n > 1, the Bochner-Martinelli kernel is harmonic, but not holomorphic. For a long time, this circumstance prevented the wide application of the Bochner-Martinelli integral in multidimensional complex analysis. Martinelli and Bochner used their representation to prove the theorem of Hartogs (Osgood- Brown) on removability of compact singularities of holomorphic functions in en when n > 1. In the 1950‘s and 1960‘s, only isolated works appeared that studied the boundary behavior of Bochner-Martinelli (type) integrals by analogy with Cauchy (type) integrals. This study was based on the Bochner-Martinelli integral being the sum of a double-layer potential and the tangential derivative of a
出版日期Book 1995
關(guān)鍵詞Complex analysis; derivative; holomorphic function; integral; integration
版次1
doihttps://doi.org/10.1007/978-3-0348-9094-6
isbn_softcover978-3-0348-9904-8
isbn_ebook978-3-0348-9094-6
copyrightBirkh?user Verlag 1995
The information of publication is updating

書目名稱The Bochner-Martinelli Integral and Its Applications影響因子(影響力)




書目名稱The Bochner-Martinelli Integral and Its Applications影響因子(影響力)學(xué)科排名




書目名稱The Bochner-Martinelli Integral and Its Applications網(wǎng)絡(luò)公開度




書目名稱The Bochner-Martinelli Integral and Its Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Bochner-Martinelli Integral and Its Applications被引頻次




書目名稱The Bochner-Martinelli Integral and Its Applications被引頻次學(xué)科排名




書目名稱The Bochner-Martinelli Integral and Its Applications年度引用




書目名稱The Bochner-Martinelli Integral and Its Applications年度引用學(xué)科排名




書目名稱The Bochner-Martinelli Integral and Its Applications讀者反饋




書目名稱The Bochner-Martinelli Integral and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:46 | 只看該作者
第105312主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:27:55 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:55:06 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:26:08 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:07:03 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:14:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:50:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:14:51 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:11:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大埔县| 宜兴市| 汶上县| 三门县| 阳春市| 浦江县| 邻水| 涡阳县| 儋州市| 英德市| 正安县| 兴义市| 秀山| 泽州县| 南京市| 金寨县| 大同市| 嵊泗县| 昭通市| 岳阳市| 余干县| 阜宁县| 星座| 资中县| 涟水县| 张掖市| 石门县| 富蕴县| 武隆县| 通江县| 赤壁市| 当阳市| 奇台县| 晋江市| 梁平县| 贵港市| 麦盖提县| 新营市| 霍林郭勒市| 双鸭山市| 五家渠市|