找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Bochner-Martinelli Integral and Its Applications; Alexander M. Kytmanov Book 1995 Birkh?user Verlag 1995 Complex analysis.derivative.h

[復(fù)制鏈接]
查看: 19331|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:01:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications
編輯Alexander M. Kytmanov
視頻videohttp://file.papertrans.cn/906/905312/905312.mp4
圖書(shū)封面Titlebook: The Bochner-Martinelli Integral and Its Applications;  Alexander M. Kytmanov Book 1995 Birkh?user Verlag 1995 Complex analysis.derivative.h
描述The Bochner-Martinelli integral representation for holomorphic functions or‘sev- eral complex variables (which has already become classical) appeared in the works of Martinelli and Bochner at the beginning of the 1940‘s. It was the first essen- tially multidimensional representation in which the integration takes place over the whole boundary of the domain. This integral representation has a universal 1 kernel (not depending on the form of the domain), like the Cauchy kernel in e . However, in en when n > 1, the Bochner-Martinelli kernel is harmonic, but not holomorphic. For a long time, this circumstance prevented the wide application of the Bochner-Martinelli integral in multidimensional complex analysis. Martinelli and Bochner used their representation to prove the theorem of Hartogs (Osgood- Brown) on removability of compact singularities of holomorphic functions in en when n > 1. In the 1950‘s and 1960‘s, only isolated works appeared that studied the boundary behavior of Bochner-Martinelli (type) integrals by analogy with Cauchy (type) integrals. This study was based on the Bochner-Martinelli integral being the sum of a double-layer potential and the tangential derivative of a
出版日期Book 1995
關(guān)鍵詞Complex analysis; derivative; holomorphic function; integral; integration
版次1
doihttps://doi.org/10.1007/978-3-0348-9094-6
isbn_softcover978-3-0348-9904-8
isbn_ebook978-3-0348-9094-6
copyrightBirkh?user Verlag 1995
The information of publication is updating

書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications影響因子(影響力)




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications被引頻次




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications年度引用




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications讀者反饋




書(shū)目名稱(chēng)The Bochner-Martinelli Integral and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:46 | 只看該作者
第105312主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:27:55 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:55:06 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:26:08 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:07:03 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:14:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:50:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:14:51 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:11:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化市| 唐山市| 乡宁县| 高邑县| 凤山县| 绥化市| 屯昌县| 澎湖县| 安阳市| 隆安县| 高陵县| 郎溪县| 阜南县| 南安市| 新郑市| 德清县| 乐安县| 启东市| 股票| 盐池县| 永登县| 安康市| 咸阳市| 卢氏县| 木兰县| 黄平县| 莆田市| 香格里拉县| 崇礼县| 墨脱县| 邵东县| 栾城县| 安陆市| 西乌珠穆沁旗| 英超| 商南县| 秦安县| 凌源市| 芜湖县| 大新县| 通海县|