找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Subgroup Growth; Alexander Lubotzky,Dan Segal Book 2003 Birkh?user Verlag 2003 Abelian group.Algebra.Algebraic structure.Group theory.Prim

[復(fù)制鏈接]
樓主: 啞劇表演
51#
發(fā)表于 2025-3-30 08:42:53 | 只看該作者
52#
發(fā)表于 2025-3-30 13:19:10 | 只看該作者
The Growth Spectrumed groups. In earlier chapters we have seen many intermediate types of subgroup growth; we have also seen that among ‘reasonable’ classes of groups, such as linear groups, certain intermediate types cannot occur. If one considers arbitrary finitely generated groups, however, then essentially every t
53#
發(fā)表于 2025-3-30 19:24:32 | 只看該作者
Explicit Formulas and Asymptoticshe book, we take a closer look at the numbers .(.) themselves. Of course, the detailed arithmetical and asymptotic properties of this sequence will depend on the nature of the groups . under consideration, as will the methods appropriate to studying them.
54#
發(fā)表于 2025-3-30 21:21:41 | 只看該作者
Zeta Functions II: ,-adic Analytic Groupsthe sequence (..(Γ)) is determined in a simple way by the numbers a. (Γ) (for all prime-powers ..); on the other hand, for each fixed prime p the sequence (.. (Γ)) satisfies a linear recurrence relation: in other words, the local . . is a rational function in the variable p.. The first, ‘global’, pr
55#
發(fā)表于 2025-3-31 04:11:24 | 只看該作者
56#
發(fā)表于 2025-3-31 08:36:43 | 只看該作者
Probabilistic Methodsthis means that the measure of a subset . of . is construed as the probability that a random element of . lies in .. It is now natural to ask questions such as: what is the probability that a random .-tuple of elements generates .? Formally, this probability is defined as:P(G,k)= . (11.1)where μ denotes also the product measure on ..
57#
發(fā)表于 2025-3-31 12:40:22 | 只看該作者
58#
發(fā)表于 2025-3-31 14:28:33 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:00 | 只看該作者
60#
發(fā)表于 2025-4-1 00:24:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔西| 桦川县| 仙居县| 东乡族自治县| 扎囊县| 会宁县| 新龙县| 泾川县| 伊川县| 岳阳市| 湘乡市| 隆昌县| 广德县| 衡阳县| 和田县| 建宁县| 晋中市| 唐河县| 雅江县| 上思县| 浏阳市| 牡丹江市| 阜新| 乌什县| 彝良县| 都江堰市| 邵武市| 彭州市| 六安市| 壤塘县| 定州市| 淮阳县| 富川| 远安县| 白水县| 永宁县| 池州市| 建宁县| 翼城县| 乌拉特前旗| 阳谷县|