找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Subgroup Growth; Alexander Lubotzky,Dan Segal Book 2003 Birkh?user Verlag 2003 Abelian group.Algebra.Algebraic structure.Group theory.Prim

[復(fù)制鏈接]
樓主: 啞劇表演
41#
發(fā)表于 2025-3-28 14:57:27 | 只看該作者
42#
發(fā)表于 2025-3-28 20:10:18 | 只看該作者
Free Groups. By considering homomorphisms of a .-generator group . into Sym(.), we showed in §1.1 that .(.) ≤ . · (.!). for each .. It is not much harder to see that asymptotically this bound is achieved. Rather surprisingly, the same applies also to the number .(.) of maximal subgroups of index .. The precise
43#
發(fā)表于 2025-3-28 23:02:19 | 只看該作者
Groups with Exponential Subgroup Growthy exponential type is certainly some kind of restriction. Can it be characterized algebraically? This question seems difficult to answer, because the groups with exponential subgroup growth encompass a huge variety of examples. This is not really surprising, because a very mild algebraic condition i
44#
發(fā)表于 2025-3-29 06:46:50 | 只看該作者
45#
發(fā)表于 2025-3-29 09:47:09 | 只看該作者
46#
發(fā)表于 2025-3-29 11:58:33 | 只看該作者
The Generalized Congruence Subgroup Problemses of valuations) of . is denoted ., the finite subset of ‘infinite primes’ (archimedean valuations) is .∞, and ..∞ = .; so . may be identified with the set of non-zero prime ideals of .. For each υ ∈ . the υ-completion of . is denoted ..
47#
發(fā)表于 2025-3-29 17:36:57 | 只看該作者
48#
發(fā)表于 2025-3-29 21:04:07 | 只看該作者
49#
發(fā)表于 2025-3-30 00:35:47 | 只看該作者
Profinite Groups with Polynomial Subgroup Growth of finite rank. The proof involved two kinds of argument: a ‘local’ part, analysing the finite quotients of the group, and a ‘global’ part which involved representing the group as a linear group. The latter depended crucially on the group being finitely generated, and the result is not true without
50#
發(fā)表于 2025-3-30 05:38:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九寨沟县| 庐江县| 新田县| 迭部县| 会同县| 界首市| 军事| 汉川市| 井研县| 海安县| 武威市| 吉安县| 和静县| 郯城县| 肥乡县| 湘西| 墨竹工卡县| 汨罗市| 上林县| 鲁甸县| 石柱| 桓仁| 潜山县| 巴里| 思南县| 固原市| 临安市| 方城县| 江川县| 连山| 沙雅县| 阿巴嘎旗| 龙川县| 犍为县| 柳州市| 英德市| 常德市| 体育| 崇信县| 庆阳市| 大埔县|