找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Games And Related Topics; In Honor of Professo T. E. S. Raghavan,T. S. Ferguson,O. J. Vrieze Book 1991 Kluwer Academic Publisher

[復制鏈接]
樓主: dejected
31#
發(fā)表于 2025-3-26 23:19:58 | 只看該作者
32#
發(fā)表于 2025-3-27 02:11:33 | 只看該作者
https://doi.org/10.1007/978-94-011-3760-7algorithms; dynamical systems; equilibrium; information; university; utility
33#
發(fā)表于 2025-3-27 08:08:13 | 只看該作者
978-94-010-5673-1Kluwer Academic Publishers 1991
34#
發(fā)表于 2025-3-27 09:30:02 | 只看該作者
Stochastic Games And Related Topics978-94-011-3760-7Series ISSN 0924-6126 Series E-ISSN 2194-3044
35#
發(fā)表于 2025-3-27 17:31:26 | 只看該作者
36#
發(fā)表于 2025-3-27 21:25:15 | 只看該作者
Models for the Game of Liar’s DiceAn explicit multimove game of competition where a player must occasionally lie and the other must detect the lie is solved.
37#
發(fā)表于 2025-3-28 01:24:48 | 只看該作者
Algorithms for Stochastic GamesIn this paper, we present algorithms for the solution of finite discounted stochastic games, without special structure. Three equilibrium concepts are considered: saddle points in two-person zero-sum games, Nash equilibrium points in .-person non-cooperative games and finally Stackelberg equilibrium in two-person games.
38#
發(fā)表于 2025-3-28 03:08:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:38:46 | 只看該作者
Positive Stochastic Games and a Theorem of OrnsteinStochastic games were first formulated by Shapley in 1953. In his fundamental paper Shapley [.] established the existence of value and optimal stationary strategies for zero-sum β-discounted stochastic games with finitely many states and actions for the two players.
40#
發(fā)表于 2025-3-28 12:22:27 | 只看該作者
Nonzero-Sum Stochastic GamesNonzero-sum discounted stochastic games have equilibrium strategies when the state space is uncountable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
苏尼特右旗| 深水埗区| 新竹县| 无锡市| 威远县| 利辛县| 措勤县| 彭州市| 太仆寺旗| 共和县| 五家渠市| 怀安县| 洛扎县| 乐陵市| 新密市| 称多县| 濮阳市| 马龙县| 磐石市| 三门峡市| 苗栗县| 凤台县| 白玉县| 东丽区| 建水县| 灯塔市| 娄底市| 双辽市| 铁岭县| 永城市| 互助| 鲁山县| 镇江市| 元阳县| 呼玛县| 靖安县| 东乌珠穆沁旗| 建水县| 寻乌县| 广东省| 吉隆县|