找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Games And Related Topics; In Honor of Professo T. E. S. Raghavan,T. S. Ferguson,O. J. Vrieze Book 1991 Kluwer Academic Publisher

[復(fù)制鏈接]
樓主: dejected
11#
發(fā)表于 2025-3-23 13:25:55 | 只看該作者
A Brief Summary of the Papers in the Volumelayer II observes .(.) from .(.), and claims .(.) ≥ .(.) but this time .(.) must be larger than .(.). The game may be repeated indefinitely with the players reversing roles and the new call always being greater than the previous call. The value of this game is proved to be.
12#
發(fā)表于 2025-3-23 16:16:03 | 只看該作者
13#
發(fā)表于 2025-3-23 19:37:22 | 只看該作者
Symmetric Stochastic Games of Resource Extraction: The Existence of Non-Randomized Stationary Equili . x .. x..; the function .. is the instantaneous reward function for player .. Lastly, β is the discount factor the players employ. Periodically, the players observe a state . ∈ . and pick actions .. ∈ ..(.), . = 1,2
14#
發(fā)表于 2025-3-23 22:46:03 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:40 | 只看該作者
A Brief Summary of the Papers in the Volumeie and the other must detect the lie. For example, player I first observes a random variable .( 1), having a continuous distribution function .(.). He then chooses .(.) and claims that .(.) ≥ .(.). Player n, must then challenge or accept player I’s claim. If he challenges, player I wins if and only
16#
發(fā)表于 2025-3-24 09:01:42 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:30 | 只看該作者
On the Algorithm of Pollatschek and Avi-ltzhakall our algorithm the Modified Newton’s Method and demonstrate that it always converges to the value-vector of the stochastic game, and from an arbitrary starting point. The step-size in our method is selected according to the well-known Armijo’s Rule.
18#
發(fā)表于 2025-3-24 16:02:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:01:42 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
加查县| 两当县| 临沭县| 缙云县| 龙江县| 保靖县| 尉犁县| 颍上县| 宝坻区| 兴城市| 巢湖市| 于都县| 靖宇县| 宁海县| 青铜峡市| 白沙| 华亭县| 石棉县| 东至县| 唐海县| 疏附县| 吉水县| 白朗县| 桃江县| 五峰| 万载县| 台东市| 兴宁市| 泊头市| 利川市| 柯坪县| 富裕县| 宜宾县| 突泉县| 通辽市| 自治县| 巴楚县| 庄浪县| 宜川县| 海原县| 柯坪县|