找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Big Data in Digital Agriculture Applications; Acquisition, Advance Haoyu Niu,YangQuan Chen Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 43181|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:49:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications
副標(biāo)題Acquisition, Advance
編輯Haoyu Niu,YangQuan Chen
視頻videohttp://file.papertrans.cn/869/868590/868590.mp4
概述Summarizes the state-of-the-art agriculture applications with small UAV.Highlights new field methods for data gathering with machine learning.Special focuses on smart data acquisition and analysis
叢書(shū)名稱(chēng)Agriculture Automation and Control
圖書(shū)封面Titlebook: Smart Big Data in Digital Agriculture Applications; Acquisition, Advance Haoyu Niu,YangQuan Chen Book 2024 The Editor(s) (if applicable) an
描述In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent “complexity” and consequent variability within the agricultural
出版日期Book 2024
關(guān)鍵詞precision agriculture; Big Data; machine learning; Unmanned Aerial Vehicle; remote sensing; unmanned grou
版次1
doihttps://doi.org/10.1007/978-3-031-52645-9
isbn_softcover978-3-031-52647-3
isbn_ebook978-3-031-52645-9Series ISSN 2731-3492 Series E-ISSN 2731-3506
issn_series 2731-3492
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications影響因子(影響力)




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications被引頻次




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications年度引用




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications讀者反饋




書(shū)目名稱(chēng)Smart Big Data in Digital Agriculture Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:36 | 只看該作者
A Low-Cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithmsisture estimation. The chapter concludes with a summary, underlining the potential of this low-cost method for widespread soil moisture monitoring. References are provided for further exploration of the methodologies and technologies discussed in this chapter.
板凳
發(fā)表于 2025-3-22 02:11:01 | 只看該作者
Conclusion and Future Researchn in a smart way. Likewise, the authors proposed the smart big data acquisition platforms, such as small UAVs and Edge-AI sensors. Smart big data cleans and transforms the data into useful information that is valuable and relevant to crops and trees growing status.
地板
發(fā)表于 2025-3-22 05:19:06 | 只看該作者
5#
發(fā)表于 2025-3-22 09:30:45 | 只看該作者
Why Do Big Data and Machine Learning Entail the Fractional Dynamics?ough an exploration of fractional calculus (FC) and fractional-order thinking (FOT), shedding light on their relevance in understanding the intricate dynamics of complex systems. The chapter delves into the concept of complexity and inverse power laws (IPLs), establishing a connection between heavy-
6#
發(fā)表于 2025-3-22 15:45:26 | 只看該作者
Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloadsisticated payloads they carry. The exploration begins with an in-depth examination of the UAV platform, elucidating the key features that make it an invaluable tool for aerial data collection. Within the context of lightweight sensors, the chapter outlines the capabilities of various sensors, includ
7#
發(fā)表于 2025-3-22 20:24:13 | 只看該作者
8#
發(fā)表于 2025-3-22 23:10:20 | 只看該作者
The Unmanned Ground Vehicles (UGVs) for Digital Agriculture role as data acquisition platforms. The chapter begins with an introduction, framing the discussion within the broader context of leveraging UGVs to enhance agricultural practices. An in-depth exploration follows, highlighting the UGV’s significance as a versatile and accessible data acquisition to
9#
發(fā)表于 2025-3-23 03:27:27 | 只看該作者
Fundamentals of Big Data, Machine Learning, and Computer Vision Workflowbegins with an introduction, setting the stage for a comprehensive tutorial that elucidates the workflow’s fundamentals. The chapter unfolds with a step-by-step tutorial focused on the classification of cotton water stress using Convolutional Neural Networks (CNNs).
10#
發(fā)表于 2025-3-23 09:22:51 | 只看該作者
A Low-Cost Proximate Sensing Method for Early Detection of Nematodes in Walnut Using Machine Learnine learning algorithms. The chapter commences with an introduction, highlighting the significance of early detection in managing nematode infestations and introducing the approach’s cost-effective nature. The Materials and Methods section outlines the study area, emphasizing the use of reflectance me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平江县| 沽源县| 衡水市| 宣威市| 临湘市| 牡丹江市| 奉新县| 陆良县| 天柱县| 富川| 二连浩特市| 玉田县| 阿巴嘎旗| 洛宁县| 绩溪县| 正镶白旗| 百色市| 嘉兴市| 嘉峪关市| 饶平县| 朝阳市| 韩城市| 菏泽市| 屏边| 福建省| 册亨县| 锡林郭勒盟| 河津市| 安阳县| 建始县| 普安县| 永胜县| 原平市| 二连浩特市| 沅江市| 禹州市| 潜山县| 万载县| 苍南县| 张掖市| 贵州省|