找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Big Data in Digital Agriculture Applications; Acquisition, Advance Haoyu Niu,YangQuan Chen Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 43184|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:49:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Smart Big Data in Digital Agriculture Applications
副標(biāo)題Acquisition, Advance
編輯Haoyu Niu,YangQuan Chen
視頻videohttp://file.papertrans.cn/869/868590/868590.mp4
概述Summarizes the state-of-the-art agriculture applications with small UAV.Highlights new field methods for data gathering with machine learning.Special focuses on smart data acquisition and analysis
叢書名稱Agriculture Automation and Control
圖書封面Titlebook: Smart Big Data in Digital Agriculture Applications; Acquisition, Advance Haoyu Niu,YangQuan Chen Book 2024 The Editor(s) (if applicable) an
描述In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent “complexity” and consequent variability within the agricultural
出版日期Book 2024
關(guān)鍵詞precision agriculture; Big Data; machine learning; Unmanned Aerial Vehicle; remote sensing; unmanned grou
版次1
doihttps://doi.org/10.1007/978-3-031-52645-9
isbn_softcover978-3-031-52647-3
isbn_ebook978-3-031-52645-9Series ISSN 2731-3492 Series E-ISSN 2731-3506
issn_series 2731-3492
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Smart Big Data in Digital Agriculture Applications影響因子(影響力)




書目名稱Smart Big Data in Digital Agriculture Applications影響因子(影響力)學(xué)科排名




書目名稱Smart Big Data in Digital Agriculture Applications網(wǎng)絡(luò)公開度




書目名稱Smart Big Data in Digital Agriculture Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Smart Big Data in Digital Agriculture Applications被引頻次




書目名稱Smart Big Data in Digital Agriculture Applications被引頻次學(xué)科排名




書目名稱Smart Big Data in Digital Agriculture Applications年度引用




書目名稱Smart Big Data in Digital Agriculture Applications年度引用學(xué)科排名




書目名稱Smart Big Data in Digital Agriculture Applications讀者反饋




書目名稱Smart Big Data in Digital Agriculture Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:36 | 只看該作者
A Low-Cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithmsisture estimation. The chapter concludes with a summary, underlining the potential of this low-cost method for widespread soil moisture monitoring. References are provided for further exploration of the methodologies and technologies discussed in this chapter.
板凳
發(fā)表于 2025-3-22 02:11:01 | 只看該作者
Conclusion and Future Researchn in a smart way. Likewise, the authors proposed the smart big data acquisition platforms, such as small UAVs and Edge-AI sensors. Smart big data cleans and transforms the data into useful information that is valuable and relevant to crops and trees growing status.
地板
發(fā)表于 2025-3-22 05:19:06 | 只看該作者
5#
發(fā)表于 2025-3-22 09:30:45 | 只看該作者
Why Do Big Data and Machine Learning Entail the Fractional Dynamics?ough an exploration of fractional calculus (FC) and fractional-order thinking (FOT), shedding light on their relevance in understanding the intricate dynamics of complex systems. The chapter delves into the concept of complexity and inverse power laws (IPLs), establishing a connection between heavy-
6#
發(fā)表于 2025-3-22 15:45:26 | 只看該作者
Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloadsisticated payloads they carry. The exploration begins with an in-depth examination of the UAV platform, elucidating the key features that make it an invaluable tool for aerial data collection. Within the context of lightweight sensors, the chapter outlines the capabilities of various sensors, includ
7#
發(fā)表于 2025-3-22 20:24:13 | 只看該作者
8#
發(fā)表于 2025-3-22 23:10:20 | 只看該作者
The Unmanned Ground Vehicles (UGVs) for Digital Agriculture role as data acquisition platforms. The chapter begins with an introduction, framing the discussion within the broader context of leveraging UGVs to enhance agricultural practices. An in-depth exploration follows, highlighting the UGV’s significance as a versatile and accessible data acquisition to
9#
發(fā)表于 2025-3-23 03:27:27 | 只看該作者
Fundamentals of Big Data, Machine Learning, and Computer Vision Workflowbegins with an introduction, setting the stage for a comprehensive tutorial that elucidates the workflow’s fundamentals. The chapter unfolds with a step-by-step tutorial focused on the classification of cotton water stress using Convolutional Neural Networks (CNNs).
10#
發(fā)表于 2025-3-23 09:22:51 | 只看該作者
A Low-Cost Proximate Sensing Method for Early Detection of Nematodes in Walnut Using Machine Learnine learning algorithms. The chapter commences with an introduction, highlighting the significance of early detection in managing nematode infestations and introducing the approach’s cost-effective nature. The Materials and Methods section outlines the study area, emphasizing the use of reflectance me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武宣县| 黔西县| 东乡族自治县| 靖西县| 巴南区| 赤峰市| 黄山市| 泽库县| 新平| 阆中市| 西吉县| 巴马| 集安市| 新乐市| 衡阳县| 孟津县| 泸溪县| 万盛区| 七台河市| 贵溪市| 浮梁县| 富源县| 金昌市| 仙游县| 轮台县| 余干县| 平凉市| 宿州市| 兴海县| 咸丰县| 丹江口市| 汉中市| 府谷县| 长阳| 龙口市| 大余县| 柳州市| 洛南县| 酒泉市| 喜德县| 阿鲁科尔沁旗|