找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes; Quasi-Coherent Torsi Leonid Positselski Book 2023 The Editor(s)

[復(fù)制鏈接]
樓主: Dopamine
21#
發(fā)表于 2025-3-25 06:15:12 | 只看該作者
22#
發(fā)表于 2025-3-25 09:19:56 | 只看該作者
23#
發(fā)表于 2025-3-25 14:25:17 | 只看該作者
Flat Affine Ind-Schemes over Ind-Schemes of Ind-Finite Type,fine morphism of schemes. The aim of this chapter is to describe the semitensor product functor as the composition of the left derived *-restriction and the right derived !-restriction of the external tensor product.
24#
發(fā)表于 2025-3-25 16:09:40 | 只看該作者
Invariance Under Postcomposition with a Smooth Morphism,et . denote the composition .. Let . be a dualizing complex on .; then . is a dualizing complex on .. The aim of this chapter is to show that the constructions of Chaps. 7–8, including the semiderived category of quasi-coherent torsion sheaves on . and the semitensor product operation on it, are pre
25#
發(fā)表于 2025-3-25 22:35:30 | 只看該作者
26#
發(fā)表于 2025-3-26 02:56:28 | 只看該作者
Book 2023meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled?.Homological Algebra of Semimodules and Semicontramodules., (Birkh?user, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent
27#
發(fā)表于 2025-3-26 06:55:29 | 只看該作者
28#
發(fā)表于 2025-3-26 08:59:32 | 只看該作者
algebraic geometry to come.Explores the semi-infinite tensorSemi-Infinite Geometry is a theory of "doubly infinite-dimensional" geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of se
29#
發(fā)表于 2025-3-26 15:28:50 | 只看該作者
0340-4773 ed students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems..978-3-031-45756-2978-3-031-45754-8Series ISSN 0340-4773 Series E-ISSN 2197-8492
30#
發(fā)表于 2025-3-26 18:31:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
疏附县| 府谷县| 衡东县| 老河口市| 宜良县| 托克托县| 盐山县| 丰县| 大竹县| 双柏县| 大冶市| 静海县| 山阴县| 青冈县| 景东| 迁西县| 榆中县| 原阳县| 霍州市| 三门峡市| 石首市| 龙里县| 梨树县| 彭州市| 绍兴县| 咸阳市| 昭平县| 老河口市| 准格尔旗| 江陵县| 县级市| 宜兰县| 文安县| 闸北区| 类乌齐县| 南通市| 沁水县| 麦盖提县| 营口市| 广平县| 东乡族自治县|