找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes; Quasi-Coherent Torsi Leonid Positselski Book 2023 The Editor(s)

[復(fù)制鏈接]
查看: 11274|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:53:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes
副標(biāo)題Quasi-Coherent Torsi
編輯Leonid Positselski
視頻videohttp://file.papertrans.cn/865/864787/864787.mp4
概述First monograph on quasi-coherent torsion sheaves on ind-schemes.Introduces novel algebraic structures which will play an important role in algebraic geometry to come.Explores the semi-infinite tensor
圖書(shū)封面Titlebook: Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes; Quasi-Coherent Torsi Leonid Positselski Book 2023 The Editor(s)
描述Semi-Infinite Geometry is a theory of "doubly infinite-dimensional" geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled?.Homological Algebra of Semimodules and Semicontramodules., (Birkh?user, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent torsion sheaves and flat pro-quasi-coherent pro-sheaves on ind-schemes are discussed at length in this book, making it suitable for use as an introduction to the theory of quasi-coherent sheaves on ind-schemes. The main output of the homological theory developed in this monograph is the functor of semitensor product on the semiderived category of quasi-coherent torsion sheaves, endowing the semiderived category with the structure of a tensor triangulated category.? The author offers two equivalent constructions of the semitensorproduct, as well as its particular case, the cotensor product, and shows that they enjoy good invariance properties. Several geometric examples are discussed in detail in the book, including the cotangent bundle to
出版日期Book 2023
關(guān)鍵詞Algebraic Geometry; Semiderived Category; Ind-schemes; Commutative Rings; Torsion Sheaves
版次1
doihttps://doi.org/10.1007/978-3-031-37905-5
isbn_softcover978-3-031-37907-9
isbn_ebook978-3-031-37905-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes影響因子(影響力)




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes影響因子(影響力)學(xué)科排名




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes被引頻次




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes被引頻次學(xué)科排名




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes年度引用




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes年度引用學(xué)科排名




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes讀者反饋




書(shū)目名稱Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:28:10 | 只看該作者
Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes978-3-031-37905-5
地板
發(fā)表于 2025-3-22 08:16:36 | 只看該作者
ct, as well as its particular case, the cotensor product, and shows that they enjoy good invariance properties. Several geometric examples are discussed in detail in the book, including the cotangent bundle to 978-3-031-37907-9978-3-031-37905-5
5#
發(fā)表于 2025-3-22 10:11:13 | 只看該作者
Ind-Schemes and Their Morphisms,In this chapter we present a discussion of the foundations of the theory of ind-schemes emphasizing relations and compatibilities between various definitions. For example, we explain that any ind-scheme which can be represented .can also be represented by a direct system of closed immersions of affine schemes.
6#
發(fā)表于 2025-3-22 14:53:14 | 只看該作者
Flat Pro-Quasi-Coherent Pro-Sheaves,Pro-quasi-coherent pro-sheaves are another kind of module objects over ind-schemes. The whole category of pro-quasi-coherent pro-sheaves is not well-behaved homologically, but its full subcategory of flat pro-quasi-coherent pro-sheaves is.
7#
發(fā)表于 2025-3-22 17:33:43 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:20 | 只看該作者
The Semitensor Product,The aim of this chapter is to construct the semitensor product operation on the semiderived category of quasi-coherent torsion sheaves.
9#
發(fā)表于 2025-3-23 04:08:35 | 只看該作者
Leonid PositselskiFirst monograph on quasi-coherent torsion sheaves on ind-schemes.Introduces novel algebraic structures which will play an important role in algebraic geometry to come.Explores the semi-infinite tensor
10#
發(fā)表于 2025-3-23 08:08:56 | 只看該作者
978-3-031-37907-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆城县| 泰来县| 深圳市| 青河县| 孝昌县| 平果县| 日喀则市| 会东县| 高密市| 安宁市| 蛟河市| 合阳县| 鹤壁市| 田阳县| 图木舒克市| 乌拉特中旗| 天峻县| 东乌珠穆沁旗| 南江县| 高密市| 衡水市| 沙田区| 马关县| 温泉县| 沙雅县| 汽车| 兴仁县| 安西县| 荣昌县| 扶绥县| 嵊泗县| 阜城县| 沅陵县| 章丘市| 虹口区| 千阳县| 冷水江市| 旬阳县| 定襄县| 兖州市| 静乐县|