找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Second-order Learning in Developmental Evaluation; New Methods for Comp Andrew Mitchell Book 2019 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 04:39:14 | 只看該作者
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 11:27:43 | 只看該作者
Andrew MitchellProvides a Developmental Education framework which augments traditional monitoring and evaluation.Details a case study investigating the sustainability of a town in the UK.Investigates how project lea
23#
發(fā)表于 2025-3-25 12:02:37 | 只看該作者
http://image.papertrans.cn/s/image/863178.jpg
24#
發(fā)表于 2025-3-25 19:51:38 | 只看該作者
https://doi.org/10.1007/978-3-319-99371-3project learning; developmental evaluation; enactive cognition; cognitive science; second-order learning
25#
發(fā)表于 2025-3-25 21:32:46 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:53 | 只看該作者
Andrew Mitchellinator offers the user several models to build predictive systems with. This paper explores which ML models (in Wekinator) are the most useful for predicting an output in the context of interactive music composition. We use two performance gestures for piano, with opposing datasets, to train availab
27#
發(fā)表于 2025-3-26 06:43:52 | 只看該作者
Andrew Mitchellinator offers the user several models to build predictive systems with. This paper explores which ML models (in Wekinator) are the most useful for predicting an output in the context of interactive music composition. We use two performance gestures for piano, with opposing datasets, to train availab
28#
發(fā)表于 2025-3-26 09:38:10 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:49 | 只看該作者
30#
發(fā)表于 2025-3-26 16:55:54 | 只看該作者
Andrew Mitchellperformers from a randomly chosen parameter set. Our experiments are conducted on datasets from the recently expanded UCR time series archive. We demonstrate the usability improvements to randomised BOSS with a case study using a large whale acoustics dataset for which BOSS proved infeasible.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佳木斯市| 玛多县| 凉山| 嘉峪关市| 普定县| 开阳县| 土默特左旗| 濮阳市| 稻城县| 陕西省| 康定县| 江阴市| 寻乌县| 凉城县| 阿克苏市| 铜鼓县| 泰来县| 伊通| 屏山县| 靖宇县| 隆德县| 江陵县| 安新县| 津市市| 湘西| 明溪县| 六枝特区| 南京市| 定结县| 黑龙江省| 磐安县| 利津县| 合川市| 陇南市| 昌图县| 永安市| 图木舒克市| 综艺| 巨鹿县| 珲春市| 天祝|