找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwarz-Pick Type Inequalities; Farit G. Avkhadiev,Karl-Joachim Wirths Book 2009 Birkh?user Basel 2009 Area.Factor.Lemma.Schwarz lemma.ana

[復(fù)制鏈接]
樓主: 佯攻
31#
發(fā)表于 2025-3-26 23:42:49 | 只看該作者
978-3-7643-9999-3Birkh?user Basel 2009
32#
發(fā)表于 2025-3-27 02:42:27 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:10 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:05 | 只看該作者
Basic Schwarz-Pick type inequalities,Let Ω ? . and п ? . be two domains equipped by the Poincaré metric. We are concerned with the set . of functions locally holomorphic or meromorphic in Ω and, in general, multivalued. Let λ. (.), . ∈ Ω, and λп (.), . ∈ п, denote the density of the Poincaré metric at . ∈ Ω and . ∈ п, respectively.
35#
發(fā)表于 2025-3-27 14:26:40 | 只看該作者
Multiply connected domains,In the preceding chapters we considered punishing factors for simply connected domains, except the case C.(Ω,п). Namely, in Section 4.6 it was proved that for all hyperbolic domains Ω ? . and п ? .
36#
發(fā)表于 2025-3-27 21:25:55 | 只看該作者
Related results,First, we will give an outline of the ideas and results that led to the conjectures of Chua. To our knowledge, E. Landau was the first who considered the possibility to follow G. Pick’s program as indicated in the introduction for the higher derivatives of schlicht functions. He proved the following theorem (compare Landau [98], Gong [71]).
37#
發(fā)表于 2025-3-27 23:52:26 | 只看該作者
38#
發(fā)表于 2025-3-28 03:08:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:44:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:15 | 只看該作者
Michelle J. Bellino,James H. WilliamsThe collection brings together diverse contemporary and historical cases of curricula, educational practice, and policy as implemented in conflict-affected and post-conflict contexts; these empirical
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇仁县| 加查县| 桐庐县| 梁山县| 磴口县| 民丰县| 临夏县| 渑池县| 辽中县| 昭通市| 盘山县| 博湖县| 汝南县| 兴城市| 天峨县| 陵川县| 安丘市| 百色市| 阳泉市| 泰兴市| 曲阜市| 班玛县| 石狮市| 鄱阳县| 惠安县| 乐陵市| 汶川县| 高碑店市| 沅陵县| 沙雅县| 潞西市| 吉林市| 滁州市| 安岳县| 张家川| 方山县| 阜平县| 新民市| 元谋县| 湾仔区| 云梦县|