找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwarz-Pick Type Inequalities; Farit G. Avkhadiev,Karl-Joachim Wirths Book 2009 Birkh?user Basel 2009 Area.Factor.Lemma.Schwarz lemma.ana

[復(fù)制鏈接]
樓主: 佯攻
21#
發(fā)表于 2025-3-25 06:43:43 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:39 | 只看該作者
Basic coefficient inequalities, Goluzin [70], Goodman [73], Hayman [78], Pommerenke [128], and Duren [60]. In this chapter we only mention a few classical results on coefficients which are closely connected with the topic of this book. Also, we give several new facts with short proofs that have until now been presented only in or
23#
發(fā)表于 2025-3-25 13:12:04 | 只看該作者
Punishing factors for special cases,look at (5.1) in the following way. The quotient (λΩ(.))./λп(.) reflects the influence of the positions of the points . and . in Ω and ∏ on the nth derivative .(.), whereas the quantities C.(Ω, п) are factors punishing bad behaviour of Ω or ? at the boundary. This motivates the title of the present
24#
發(fā)表于 2025-3-25 19:51:01 | 只看該作者
Some open problems,ains are involved. From this point of view, it seems natural that the difficulties become nearly insuperable, if one allows the points . ∈ Ω or .) ∈ п, or both to vary, and asks for the maximum. Nevertheless, there exists one problem of this type that has attracted researchers for many years because
25#
發(fā)表于 2025-3-25 22:42:05 | 只看該作者
26#
發(fā)表于 2025-3-26 01:50:38 | 只看該作者
Introduction,ional condition we impose on these functions is the condition that the range .(Ω) is contained in a given domain ∏ ? .. This fact will be denoted by . ∈ .(Ω, п). We shall describe how one may get estimates for the derivatives |. (.)|, . ∈ ?, . ∈ . (Ω, ∏) dependent on the position of . in Ω and .(z.) in п.
27#
發(fā)表于 2025-3-26 04:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 10:50:55 | 只看該作者
1660-8046 the several analytic methods, readers will find many interes.This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent?results?in geometri
29#
發(fā)表于 2025-3-26 14:57:17 | 只看該作者
30#
發(fā)表于 2025-3-26 18:55:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伽师县| 舞阳县| 榆中县| 略阳县| 确山县| 顺平县| 武强县| 安丘市| 清新县| 永吉县| 察雅县| 定陶县| 濮阳县| 河津市| 托克托县| 元朗区| 潼南县| 富裕县| 北川| 共和县| 高尔夫| 汉源县| 建瓯市| 陆河县| 施甸县| 青川县| 西充县| 天峻县| 永靖县| 青冈县| 京山县| 安庆市| 长丰县| 阿拉尔市| 黄骅市| 大田县| 博乐市| 扶绥县| 榕江县| 武冈市| 巴青县|