找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Data Mining; Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Book 2013 Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafali

[復(fù)制鏈接]
查看: 30343|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:43:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Robust Data Mining
編輯Petros Xanthopoulos,Panos M. Pardalos,Theodore B.
視頻videohttp://file.papertrans.cn/832/831300/831300.mp4
概述Summarizes the latest applications of robust optimization in data mining.An essential accompaniment for theoreticians and data miners.Includes supplementary material:
叢書名稱SpringerBriefs in Optimization
圖書封面Titlebook: Robust Data Mining;  Petros Xanthopoulos,Panos M. Pardalos,Theodore B.  Book 2013 Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafali
描述.Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise..This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of?robust data mining research field and presents ?the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. .This?brief will appeal to theoreticians and data miners working in this field..
出版日期Book 2013
關(guān)鍵詞linear discriminant analysis; robust data mining; robust optimization; support vector machines
版次1
doihttps://doi.org/10.1007/978-1-4419-9878-1
isbn_softcover978-1-4419-9877-4
isbn_ebook978-1-4419-9878-1Series ISSN 2190-8354 Series E-ISSN 2191-575X
issn_series 2190-8354
copyrightPetros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafalis 2013
The information of publication is updating

書目名稱Robust Data Mining影響因子(影響力)




書目名稱Robust Data Mining影響因子(影響力)學(xué)科排名




書目名稱Robust Data Mining網(wǎng)絡(luò)公開度




書目名稱Robust Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Robust Data Mining被引頻次




書目名稱Robust Data Mining被引頻次學(xué)科排名




書目名稱Robust Data Mining年度引用




書目名稱Robust Data Mining年度引用學(xué)科排名




書目名稱Robust Data Mining讀者反饋




書目名稱Robust Data Mining讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:45 | 只看該作者
Introduction,or among all these is their ability to extract useful patterns and associations from data usually stored in large databases. Thus DM techniques aim to provide knowledge and interesting interpretation of, usually, vast amounts of data. This task is crucial, especially today, mainly because of the eme
板凳
發(fā)表于 2025-3-22 01:25:09 | 只看該作者
Principal Component Analysis,ds and simple patterns in a group of samples. It has application in several areas of engineering. It is popular from computational perspective as it requires only an eigendecomposition or singular value decomposition. There are two alternative optimization approaches for obtaining principal componen
地板
發(fā)表于 2025-3-22 05:10:49 | 只看該作者
Linear Discriminant Analysis,s (LDA) was proposed by R. Fischer in 1936. It consists in finding the projection hyperplane that minimizes the interclass variance and maximizes the distance between the projected means of the classes. Similarly to PCA, these two objectives can be solved by solving an eigenvalue problem with the co
5#
發(fā)表于 2025-3-22 11:40:12 | 只看該作者
Support Vector Machines,eptually simplest algorithms whereas at the same time one of the best especially for binary classification. Here we illustrate the mathematical formulation of SVM together with its robust equivalent for the most common uncertainty sets.
6#
發(fā)表于 2025-3-22 14:47:48 | 只看該作者
7#
發(fā)表于 2025-3-22 17:52:59 | 只看該作者
8#
發(fā)表于 2025-3-22 21:27:29 | 只看該作者
Principal Component Analysis,d up providing the same solution. It is necessary to study and understand both of these alternative approaches. In the second part of this chapter we present the robust counterpart formulation of PCA and demonstrate how such a formulation can be used in practice in order to produce sparse solutions.
9#
發(fā)表于 2025-3-23 02:38:06 | 只看該作者
10#
發(fā)表于 2025-3-23 08:44:52 | 只看該作者
Conclusion, binary rule of the type “if feature . is more than .. and feature . less than .. then the sample belongs to class ..” There has been significant amount of research in the area of prior knowledge classification [33, 49] but there has not been a significant study of robust optimization on this direction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和静县| 佳木斯市| 金塔县| 平阴县| 东方市| 乌鲁木齐县| 德化县| 府谷县| 胶南市| 会同县| 和田市| 东平县| 寿光市| 华安县| 民县| 布拖县| 永登县| 静安区| 石棉县| 油尖旺区| 嵊泗县| 赣榆县| 高淳县| 富裕县| 洞头县| 金山区| 澎湖县| 元谋县| 新蔡县| 义乌市| 昌图县| 蚌埠市| 行唐县| 洛南县| 博野县| 孝感市| 丹江口市| 石泉县| 毕节市| 波密县| 拉孜县|