找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Data Mining; Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Book 2013 Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafali

[復(fù)制鏈接]
查看: 30347|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:43:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Robust Data Mining
編輯Petros Xanthopoulos,Panos M. Pardalos,Theodore B.
視頻videohttp://file.papertrans.cn/832/831300/831300.mp4
概述Summarizes the latest applications of robust optimization in data mining.An essential accompaniment for theoreticians and data miners.Includes supplementary material:
叢書(shū)名稱(chēng)SpringerBriefs in Optimization
圖書(shū)封面Titlebook: Robust Data Mining;  Petros Xanthopoulos,Panos M. Pardalos,Theodore B.  Book 2013 Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafali
描述.Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise..This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of?robust data mining research field and presents ?the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. .This?brief will appeal to theoreticians and data miners working in this field..
出版日期Book 2013
關(guān)鍵詞linear discriminant analysis; robust data mining; robust optimization; support vector machines
版次1
doihttps://doi.org/10.1007/978-1-4419-9878-1
isbn_softcover978-1-4419-9877-4
isbn_ebook978-1-4419-9878-1Series ISSN 2190-8354 Series E-ISSN 2191-575X
issn_series 2190-8354
copyrightPetros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafalis 2013
The information of publication is updating

書(shū)目名稱(chēng)Robust Data Mining影響因子(影響力)




書(shū)目名稱(chēng)Robust Data Mining影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Robust Data Mining網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Robust Data Mining網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Robust Data Mining被引頻次




書(shū)目名稱(chēng)Robust Data Mining被引頻次學(xué)科排名




書(shū)目名稱(chēng)Robust Data Mining年度引用




書(shū)目名稱(chēng)Robust Data Mining年度引用學(xué)科排名




書(shū)目名稱(chēng)Robust Data Mining讀者反饋




書(shū)目名稱(chēng)Robust Data Mining讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:45 | 只看該作者
Introduction,or among all these is their ability to extract useful patterns and associations from data usually stored in large databases. Thus DM techniques aim to provide knowledge and interesting interpretation of, usually, vast amounts of data. This task is crucial, especially today, mainly because of the eme
板凳
發(fā)表于 2025-3-22 01:25:09 | 只看該作者
Principal Component Analysis,ds and simple patterns in a group of samples. It has application in several areas of engineering. It is popular from computational perspective as it requires only an eigendecomposition or singular value decomposition. There are two alternative optimization approaches for obtaining principal componen
地板
發(fā)表于 2025-3-22 05:10:49 | 只看該作者
Linear Discriminant Analysis,s (LDA) was proposed by R. Fischer in 1936. It consists in finding the projection hyperplane that minimizes the interclass variance and maximizes the distance between the projected means of the classes. Similarly to PCA, these two objectives can be solved by solving an eigenvalue problem with the co
5#
發(fā)表于 2025-3-22 11:40:12 | 只看該作者
Support Vector Machines,eptually simplest algorithms whereas at the same time one of the best especially for binary classification. Here we illustrate the mathematical formulation of SVM together with its robust equivalent for the most common uncertainty sets.
6#
發(fā)表于 2025-3-22 14:47:48 | 只看該作者
7#
發(fā)表于 2025-3-22 17:52:59 | 只看該作者
8#
發(fā)表于 2025-3-22 21:27:29 | 只看該作者
Principal Component Analysis,d up providing the same solution. It is necessary to study and understand both of these alternative approaches. In the second part of this chapter we present the robust counterpart formulation of PCA and demonstrate how such a formulation can be used in practice in order to produce sparse solutions.
9#
發(fā)表于 2025-3-23 02:38:06 | 只看該作者
10#
發(fā)表于 2025-3-23 08:44:52 | 只看該作者
Conclusion, binary rule of the type “if feature . is more than .. and feature . less than .. then the sample belongs to class ..” There has been significant amount of research in the area of prior knowledge classification [33, 49] but there has not been a significant study of robust optimization on this direction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝坻区| 保靖县| 莲花县| 镇原县| 万全县| 德兴市| 廉江市| 黑水县| 江源县| 泾阳县| 吉林市| 宁武县| 兰西县| 新宾| 皮山县| 竹溪县| 怀宁县| 新密市| 东平县| 盘锦市| 饶河县| 县级市| 金乡县| 景谷| 平阴县| 哈密市| 秦皇岛市| 威远县| 桃园县| 曲麻莱县| 东乌珠穆沁旗| 靖宇县| 明溪县| 电白县| 涟源市| 台江县| 石屏县| 丰原市| 惠东县| 宁安市| 乌鲁木齐市|