找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robot Learning from Human Teachers; Sonia Chernova,Andrea L. Thomaz Book 2014 Springer Nature Switzerland AG 2014

[復制鏈接]
樓主: DUCT
11#
發(fā)表于 2025-3-23 12:16:14 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:27 | 只看該作者
Introduction, the real world. Today, and for the foreseeable future, it is not possible to go to a store and bring home a robot that will clean your house, cook your breakfast, and do your laundry. These everyday tasks, while seemingly simple, contain many variations and complexities that pose insurmountable challenges for today’s machine learning algorithms.
13#
發(fā)表于 2025-3-23 19:57:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:08 | 只看該作者
Learning Low-Level Motion Trajectories, . in which they would be used (covered in Chapter 5). In the literature there are several different names given to this class of “l(fā)ow-level” action learning, thus in this chapter we use the terms . and . interchangeably.
15#
發(fā)表于 2025-3-24 02:34:50 | 只看該作者
Learning High-Level Tasks,ning a reactive task policy representing a functional mapping of states to actions, learning a task plan, and learning the task objectives. We go on to discuss the role that feature selection, reference frame identification and object affordances play in the learning process.
16#
發(fā)表于 2025-3-24 08:32:46 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:57 | 只看該作者
Human Social Learning, process. Although robots can also learn from observing demonstrations not directed at them, albeit less efficiently, the scenario we address here is primarily the one where a person is explicitly trying to teach the robot something in particular.
18#
發(fā)表于 2025-3-24 18:22:48 | 只看該作者
19#
發(fā)表于 2025-3-24 20:12:13 | 只看該作者
Learning Low-Level Motion Trajectories,algorithm can be designed to work with. We now turn our attention to the wide range of algorithms for building skill and task models from demonstration data. In this chapter we focus on approaches that learn new motions or primitive actions. The motivation behind learning new motions is typically th
20#
發(fā)表于 2025-3-25 02:47:17 | 只看該作者
Learning High-Level Tasks, (Figure 5.1). While the line between high-level and low-level learning is not concrete, the distinction we make here is that techniques in this chapter assume the existence of a discrete set of action primitives that can be combined to perform a more complex behavior. As in the previous chapter, we
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 19:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南漳县| 鲁甸县| 武城县| 迁安市| 泰宁县| 岚皋县| 米林县| 科技| 安达市| 安化县| 大余县| 东辽县| 陈巴尔虎旗| 任丘市| 临沭县| 楚雄市| 古田县| 石渠县| 宣城市| 习水县| 浮山县| 马鞍山市| 南宁市| 香河县| 交城县| 嘉荫县| 台山市| 正定县| 宿迁市| 新建县| 北海市| 平江县| 余庆县| 梁河县| 武鸣县| 玉山县| 临漳县| 观塘区| 通道| 定西市| 天全县|