找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robot Learning from Human Teachers; Sonia Chernova,Andrea L. Thomaz Book 2014 Springer Nature Switzerland AG 2014

[復(fù)制鏈接]
查看: 15126|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:46:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Robot Learning from Human Teachers
編輯Sonia Chernova,Andrea L. Thomaz
視頻videohttp://file.papertrans.cn/832/831053/831053.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Robot Learning from Human Teachers;  Sonia Chernova,Andrea L. Thomaz Book 2014 Springer Nature Switzerland AG 2014
描述Learning from Demonstration (LfD) explores techniques for learning a task policy from examples provided by a human teacher. The field of LfD has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we provide an introduction to the field with a focus on the unique technical challenges associated with designing robots that learn from naive human teachers. We begin, in the introduction, with a unification of the various terminology seen in the literature as well as an outline of the design choices one has in designing an LfD system. Chapter 2 gives a brief survey of the psychology literature that provides insights from human social learning that are relevant to designing robotic social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one makes and state of the art approaches in prior work. First, is the choice of input, how the human teacher interacts with the robot to provide demonstra
出版日期Book 2014
版次1
doihttps://doi.org/10.1007/978-3-031-01570-0
isbn_softcover978-3-031-00442-1
isbn_ebook978-3-031-01570-0Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2014
The information of publication is updating

書目名稱Robot Learning from Human Teachers影響因子(影響力)




書目名稱Robot Learning from Human Teachers影響因子(影響力)學(xué)科排名




書目名稱Robot Learning from Human Teachers網(wǎng)絡(luò)公開度




書目名稱Robot Learning from Human Teachers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Robot Learning from Human Teachers被引頻次




書目名稱Robot Learning from Human Teachers被引頻次學(xué)科排名




書目名稱Robot Learning from Human Teachers年度引用




書目名稱Robot Learning from Human Teachers年度引用學(xué)科排名




書目名稱Robot Learning from Human Teachers讀者反饋




書目名稱Robot Learning from Human Teachers讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:58 | 只看該作者
Book 2014social learning that are relevant to designing robotic social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one makes and state of the art approaches in prior work. First, is the choice of input, how the human teacher interacts with the robot to provide demonstra
板凳
發(fā)表于 2025-3-22 01:40:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:35:46 | 只看該作者
5#
發(fā)表于 2025-3-22 10:04:29 | 只看該作者
6#
發(fā)表于 2025-3-22 16:53:11 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:28 | 只看該作者
Robot Learning from Human Teachers978-3-031-01570-0Series ISSN 1939-4608 Series E-ISSN 1939-4616
8#
發(fā)表于 2025-3-23 01:06:50 | 只看該作者
Refining a Learned Task,rner’s exploration. In general, this is a complex process where the teacher dynamically adjusts their support based on the learners demonstrated skill level. The learner, in turn, helps the instructor by making their learning process transparent through communicative acts, and by demonstrating their current knowledge and mastery of the task.
9#
發(fā)表于 2025-3-23 05:01:32 | 只看該作者
Book 2014 into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts
10#
發(fā)表于 2025-3-23 08:35:35 | 只看該作者
1939-4608 has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not roboti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
忻城县| 五原县| 扶沟县| 天镇县| 芦溪县| 长治市| 轮台县| 长阳| 高陵县| 曲周县| 基隆市| 嘉峪关市| 犍为县| 尚义县| 云阳县| 大化| 玉环县| 城口县| 什邡市| 沽源县| 通许县| 临湘市| 佛冈县| 水城县| 天峻县| 广饶县| 赣州市| 泰安市| 渑池县| 卫辉市| 朝阳市| 郓城县| 浮山县| 葫芦岛市| 滦平县| 金华市| 紫金县| 东安县| 邳州市| 鄂州市| 美姑县|