找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robot Learning from Human Teachers; Sonia Chernova,Andrea L. Thomaz Book 2014 Springer Nature Switzerland AG 2014

[復(fù)制鏈接]
樓主: DUCT
11#
發(fā)表于 2025-3-23 12:16:14 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:27 | 只看該作者
Introduction, the real world. Today, and for the foreseeable future, it is not possible to go to a store and bring home a robot that will clean your house, cook your breakfast, and do your laundry. These everyday tasks, while seemingly simple, contain many variations and complexities that pose insurmountable challenges for today’s machine learning algorithms.
13#
發(fā)表于 2025-3-23 19:57:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:08 | 只看該作者
Learning Low-Level Motion Trajectories, . in which they would be used (covered in Chapter 5). In the literature there are several different names given to this class of “l(fā)ow-level” action learning, thus in this chapter we use the terms . and . interchangeably.
15#
發(fā)表于 2025-3-24 02:34:50 | 只看該作者
Learning High-Level Tasks,ning a reactive task policy representing a functional mapping of states to actions, learning a task plan, and learning the task objectives. We go on to discuss the role that feature selection, reference frame identification and object affordances play in the learning process.
16#
發(fā)表于 2025-3-24 08:32:46 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:57 | 只看該作者
Human Social Learning, process. Although robots can also learn from observing demonstrations not directed at them, albeit less efficiently, the scenario we address here is primarily the one where a person is explicitly trying to teach the robot something in particular.
18#
發(fā)表于 2025-3-24 18:22:48 | 只看該作者
19#
發(fā)表于 2025-3-24 20:12:13 | 只看該作者
Learning Low-Level Motion Trajectories,algorithm can be designed to work with. We now turn our attention to the wide range of algorithms for building skill and task models from demonstration data. In this chapter we focus on approaches that learn new motions or primitive actions. The motivation behind learning new motions is typically th
20#
發(fā)表于 2025-3-25 02:47:17 | 只看該作者
Learning High-Level Tasks, (Figure 5.1). While the line between high-level and low-level learning is not concrete, the distinction we make here is that techniques in this chapter assume the existence of a discrete set of action primitives that can be combined to perform a more complex behavior. As in the previous chapter, we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新泰市| 平阴县| 榆树市| 金山区| 突泉县| 乐安县| 若羌县| 德州市| 连州市| 金乡县| 防城港市| 远安县| 竹溪县| 万安县| 崇仁县| 新沂市| 清苑县| 崇信县| 宁陵县| 娱乐| 桑植县| 客服| 儋州市| 三江| 修文县| 嘉定区| 怀安县| 天水市| 宜都市| 会同县| 南溪县| 三原县| 贡山| 湛江市| 容城县| 芷江| 杭州市| 临桂县| 宜黄县| 靖江市| 孙吴县|