找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings of Quotients; An Introduction to M Bo Stenstr?m Book 1975 Springer-Verlag Berlin Heidelberg 1975 Adjoint functor.Coproduct.Prime.Quot

[復(fù)制鏈接]
樓主: Enclosure
11#
發(fā)表于 2025-3-23 11:39:07 | 只看該作者
Perfect Localizations, §1), which in many important cases actually is a natural equivalence (e.g. for rings of fractions). In these cases, . must be an exact functor and thus . is flat as a left .-module. But there are several other nice properties of rings of fractions which also extend to these cases. One such property
12#
發(fā)表于 2025-3-23 17:02:17 | 只看該作者
The Maximal Ring of Quotients of a Non-Singular Ring, and .-(., .) consists of the non-singular injective .-modules. It follows from Prop. X.1.7 that every object in the category .-(., .) is injective. Thus .-(., .) is a spectral category. In view of this observation, it is natural to begin this chapter with a study of the properties of spectral categ
13#
發(fā)表于 2025-3-23 18:53:19 | 只看該作者
,Finiteness Conditions on ,-(,, ?), reflected by properties of the ring .. The lattice of subobjects of . in the category .-(., ?) is isomorphic to the lattice Sat.(.) of ?-saturated submodules of ., and the finiteness properties may therefore be formulated for the lattices of ?-saturated submodules.
14#
發(fā)表于 2025-3-24 00:59:01 | 只看該作者
Self-Injective Rings,ase when the maximal ring of quotients is a self-injective ring, a case which will be studied in this Chapter. For this we need to examine the properties of self-injective rings in some detail, and we devote the first three sections to that purpose.
15#
發(fā)表于 2025-3-24 05:00:31 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:23 | 只看該作者
18#
發(fā)表于 2025-3-24 17:41:02 | 只看該作者
Simple Torsion Theories,dempotents. This chapter is devoted to the development of these methods and to their applications to torsion theory, as well as to an account of the basic theory of rings with various minimum conditions.
19#
發(fā)表于 2025-3-24 21:02:11 | 只看該作者
20#
發(fā)表于 2025-3-25 00:23:29 | 只看該作者
Torsion Theory,en to each torsion theory we associate a ring of quotients. This chapter is devoted to a comprehensive study of the general aspects of torsion. The basic result will be that the particular notion of torsion, used in the theory of rings of quotients, can be desribed in three equivalent ways (Gabriel [2], Maranda [1]):
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嵊州市| 社旗县| 曲松县| 仲巴县| 苍南县| 芮城县| 焦作市| 娱乐| 邵阳市| 兴业县| 桃源县| 寻甸| 武定县| 宜川县| 龙泉市| 绥化市| 广河县| 时尚| 苍南县| 龙海市| 天峻县| 澎湖县| 沿河| 禄劝| 柳州市| 肥西县| 巴楚县| 仁怀市| 邵阳市| 静海县| 白银市| 闵行区| 东丽区| 新兴县| 绥滨县| 洪雅县| 四子王旗| 波密县| 深水埗区| 盘锦市| 泾阳县|