找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings of Quotients; An Introduction to M Bo Stenstr?m Book 1975 Springer-Verlag Berlin Heidelberg 1975 Adjoint functor.Coproduct.Prime.Quot

[復(fù)制鏈接]
查看: 26889|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:45:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rings of Quotients
副標(biāo)題An Introduction to M
編輯Bo Stenstr?m
視頻videohttp://file.papertrans.cn/831/830424/830424.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Rings of Quotients; An Introduction to M Bo Stenstr?m Book 1975 Springer-Verlag Berlin Heidelberg 1975 Adjoint functor.Coproduct.Prime.Quot
描述The theory of rings of quotients has its origin in the work of (j). Ore and K. Asano on the construction of the total ring of fractions, in the 1930‘s and 40‘s. But the subject did not really develop until the end of the 1950‘s, when a number of important papers appeared (by R. E. Johnson, Y. Utumi, A. W. Goldie, P. Gabriel, J. Lambek, and others). Since then the progress has been rapid, and the subject has by now attained a stage of maturity, where it is possible to make a systematic account of it (which is the purpose of this book). The most immediate example of a ring of quotients is the field of fractions Q of a commutative integral domain A. It may be characterized by the two properties: (i) For every qEQ there exists a non-zero SEA such that qSEA. (ii) Q is the maximal over-ring of A satisfying condition (i). The well-known construction of Q can be immediately extended to the case when A is an arbitrary commutative ring and S is a multiplicatively closed set of non-zero-divisors of A. In that case one defines the ring of fractions Q = A [S-l] as consisting of pairs (a, s) with aEA and SES, with the declaration that (a, s)=(b, t) if there exists UES such that uta = usb. The re
出版日期Book 1975
關(guān)鍵詞Adjoint functor; Coproduct; Prime; Quotientenring; Rings; algebra; colimit
版次1
doihttps://doi.org/10.1007/978-3-642-66066-5
isbn_softcover978-3-642-66068-9
isbn_ebook978-3-642-66066-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1975
The information of publication is updating

書目名稱Rings of Quotients影響因子(影響力)




書目名稱Rings of Quotients影響因子(影響力)學(xué)科排名




書目名稱Rings of Quotients網(wǎng)絡(luò)公開(kāi)度




書目名稱Rings of Quotients網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Rings of Quotients被引頻次




書目名稱Rings of Quotients被引頻次學(xué)科排名




書目名稱Rings of Quotients年度引用




書目名稱Rings of Quotients年度引用學(xué)科排名




書目名稱Rings of Quotients讀者反饋




書目名稱Rings of Quotients讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:51 | 只看該作者
Introduction,nd 40’s. But the subject did not really develop until the end of the 1950’s, when a number of important papers appeared (by R.E. Johnson, Y. Utumi, A. W. Goldie, P. Gabriel, J. Lambek, and others). Since then the progress has been rapid, and the subject has by now attained a stage of maturity, where
板凳
發(fā)表于 2025-3-22 02:18:28 | 只看該作者
地板
發(fā)表于 2025-3-22 04:55:10 | 只看該作者
5#
發(fā)表于 2025-3-22 11:00:37 | 只看該作者
6#
發(fā)表于 2025-3-22 16:32:16 | 只看該作者
Torsion Theory,we get to consider general rings of quotients of ., but here we will follow a converse course. We start by axiomatizing the concept of torsion, and then to each torsion theory we associate a ring of quotients. This chapter is devoted to a comprehensive study of the general aspects of torsion. The ba
7#
發(fā)表于 2025-3-22 18:37:40 | 只看該作者
8#
發(fā)表于 2025-3-22 21:34:46 | 只看該作者
Simple Torsion Theories,rings, for which all hereditary torsion theories are simple. Therefore it is of a certain interest to study simple torsion theories in some detail. The methods to be used for that purpose are the basic ones of the theory of artinian rings, such as the use of the Jacobson radical and the lifting of i
9#
發(fā)表于 2025-3-23 04:34:59 | 只看該作者
Rings and Modules of Quotients,ients . of a non-singular ring .. This was done before the theory of injective envelopes had become available, but it was later proved that . could be used as an injective envelope of the ring .. The maximal ring of quotients of an arbitrary ring . was defined by Utumi [1] and studied by Findlay and
10#
發(fā)表于 2025-3-23 06:44:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 绵阳市| 金寨县| 平江县| 沁水县| 福海县| 颍上县| 隆德县| 德令哈市| 阳城县| 临桂县| 怀来县| 会理县| 伊金霍洛旗| 治县。| 同心县| 乐清市| 固安县| 稻城县| 苍南县| 利辛县| 南昌市| 浦城县| 龙州县| 永胜县| 普安县| 香格里拉县| 黑龙江省| 万荣县| 车险| 天峨县| 休宁县| 紫阳县| 商水县| 特克斯县| 郴州市| 周至县| 多伦县| 台南市| 封丘县| 南部县|