找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings Close to Regular; Askar Tuganbaev Book 2002 Springer Science+Business Media Dordrecht 2002 DEX.Exchange.Finite.K-theory.Maxima.algeb

[復(fù)制鏈接]
查看: 6237|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:23:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Rings Close to Regular
編輯Askar Tuganbaev
視頻videohttp://file.papertrans.cn/831/830416/830416.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Rings Close to Regular;  Askar Tuganbaev Book 2002 Springer Science+Business Media Dordrecht 2002 DEX.Exchange.Finite.K-theory.Maxima.algeb
描述Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l‘ then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
出版日期Book 2002
關(guān)鍵詞DEX; Exchange; Finite; K-theory; Maxima; algebra; eXist; maximum; proof; ring; ring theory
版次1
doihttps://doi.org/10.1007/978-94-015-9878-1
isbn_softcover978-90-481-6116-4
isbn_ebook978-94-015-9878-1
copyrightSpringer Science+Business Media Dordrecht 2002
The information of publication is updating

書目名稱Rings Close to Regular影響因子(影響力)




書目名稱Rings Close to Regular影響因子(影響力)學(xué)科排名




書目名稱Rings Close to Regular網(wǎng)絡(luò)公開度




書目名稱Rings Close to Regular網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rings Close to Regular被引頻次




書目名稱Rings Close to Regular被引頻次學(xué)科排名




書目名稱Rings Close to Regular年度引用




書目名稱Rings Close to Regular年度引用學(xué)科排名




書目名稱Rings Close to Regular讀者反饋




書目名稱Rings Close to Regular讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:31 | 只看該作者
Regular and Strongly Regular Rings,A module . is said to be . if every cyclic submodule of . is a direct summand of ..
地板
發(fā)表于 2025-3-22 05:30:33 | 只看該作者
5#
發(fā)表于 2025-3-22 11:23:31 | 只看該作者
Semiregular and Weakly Regular Rings,For a module ., we say that a submodule . of . of . if there is a direct decomposition . such that . and .?. is a superfluous submodule of .. In this case, .?. is a superfluous submodule of . and .?.?.
6#
發(fā)表于 2025-3-22 16:26:11 | 只看該作者
7#
發(fā)表于 2025-3-22 19:40:05 | 只看該作者
Exchange Rings and Modules,Let . be a cardinal number. A module . is called a . (see [123]) if for every module . and each direct decomposition .... such that . and card., there are submodules ..′... with ....′. (It follows from the modular law that ..′ must be a direct summand of .. for all ..)
8#
發(fā)表于 2025-3-22 23:53:35 | 只看該作者
9#
發(fā)表于 2025-3-23 02:04:22 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:05 | 只看該作者
https://doi.org/10.1007/978-94-015-9878-1DEX; Exchange; Finite; K-theory; Maxima; algebra; eXist; maximum; proof; ring; ring theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵港市| 商洛市| 察隅县| 关岭| 江华| 宁国市| 青龙| 乌拉特中旗| 郁南县| 晋城| 汨罗市| 灵川县| 玉田县| 阿巴嘎旗| 汝州市| 青田县| 海门市| 昌黎县| 衡南县| 图们市| 周宁县| 胶州市| 淮南市| 五台县| 鄂托克前旗| 兴安盟| 县级市| 鲁山县| 临沧市| 哈密市| 蓬莱市| 台前县| 青铜峡市| 德清县| 洪雅县| 和田市| 灵石县| 大余县| 西畴县| 天水市| 寿阳县|