找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings Close to Regular; Askar Tuganbaev Book 2002 Springer Science+Business Media Dordrecht 2002 DEX.Exchange.Finite.K-theory.Maxima.algeb

[復(fù)制鏈接]
查看: 6236|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:23:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rings Close to Regular
編輯Askar Tuganbaev
視頻videohttp://file.papertrans.cn/831/830416/830416.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Rings Close to Regular;  Askar Tuganbaev Book 2002 Springer Science+Business Media Dordrecht 2002 DEX.Exchange.Finite.K-theory.Maxima.algeb
描述Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l‘ then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
出版日期Book 2002
關(guān)鍵詞DEX; Exchange; Finite; K-theory; Maxima; algebra; eXist; maximum; proof; ring; ring theory
版次1
doihttps://doi.org/10.1007/978-94-015-9878-1
isbn_softcover978-90-481-6116-4
isbn_ebook978-94-015-9878-1
copyrightSpringer Science+Business Media Dordrecht 2002
The information of publication is updating

書目名稱Rings Close to Regular影響因子(影響力)




書目名稱Rings Close to Regular影響因子(影響力)學(xué)科排名




書目名稱Rings Close to Regular網(wǎng)絡(luò)公開度




書目名稱Rings Close to Regular網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rings Close to Regular被引頻次




書目名稱Rings Close to Regular被引頻次學(xué)科排名




書目名稱Rings Close to Regular年度引用




書目名稱Rings Close to Regular年度引用學(xué)科排名




書目名稱Rings Close to Regular讀者反饋




書目名稱Rings Close to Regular讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:31 | 只看該作者
Regular and Strongly Regular Rings,A module . is said to be . if every cyclic submodule of . is a direct summand of ..
地板
發(fā)表于 2025-3-22 05:30:33 | 只看該作者
5#
發(fā)表于 2025-3-22 11:23:31 | 只看該作者
Semiregular and Weakly Regular Rings,For a module ., we say that a submodule . of . of . if there is a direct decomposition . such that . and .?. is a superfluous submodule of .. In this case, .?. is a superfluous submodule of . and .?.?.
6#
發(fā)表于 2025-3-22 16:26:11 | 只看該作者
7#
發(fā)表于 2025-3-22 19:40:05 | 只看該作者
Exchange Rings and Modules,Let . be a cardinal number. A module . is called a . (see [123]) if for every module . and each direct decomposition .... such that . and card., there are submodules ..′... with ....′. (It follows from the modular law that ..′ must be a direct summand of .. for all ..)
8#
發(fā)表于 2025-3-22 23:53:35 | 只看該作者
9#
發(fā)表于 2025-3-23 02:04:22 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:05 | 只看該作者
https://doi.org/10.1007/978-94-015-9878-1DEX; Exchange; Finite; K-theory; Maxima; algebra; eXist; maximum; proof; ring; ring theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦县| 鹤山市| 博白县| 呼玛县| 西宁市| 襄城县| 江山市| 台北市| 和静县| 广德县| 泾川县| 宁蒗| 博客| 平遥县| 吉木萨尔县| 乐平市| 洛阳市| 通化市| 石柱| 盐源县| 通海县| 萝北县| 博客| 灵石县| 那坡县| 寿阳县| 启东市| 石渠县| 广平县| 东宁县| 定日县| 浦北县| 乌鲁木齐县| 桂林市| 香格里拉县| 淮北市| 西充县| 英德市| 荥经县| 夏河县| 保靖县|