找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannsche Fl?chen; Klaus Lamotke Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Algebraische Topologie.Analysis.Diff

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:34:24 | 只看該作者
12#
發(fā)表于 2025-3-23 17:32:24 | 只看該作者
Ebene Kurven,ung der analytischen Geometrie durch Descartes (1637) stellten sich die Kegelschnitte als . heraus: Sie werden durch polynomiale Glei- chungen .(.) = 0 zweiten Grades definiert. Bei analytischer Betrach- tungsweise bilden die . (Kurven dritten Grades) die n?chste Klasse. Hier treten zus?tzliche Ph?n
13#
發(fā)表于 2025-3-23 20:06:20 | 只看該作者
Harmonische Funktionen,iemanns Dissertation (1851) werden zun?chst reelle . konstruiert, die lokal Realteile holomorpher Funktionen sind. Dazu benutzte Riemann eine Methode der Potentialtheorie, die er als Dirichletsches Prinzip bezeichnete und nicht weiter begründete; siehe die historischen Bemerkungen in 10.3.4. Wir fol
14#
發(fā)表于 2025-3-24 00:59:57 | 只看該作者
Uniformisierung. Dreiecksgruppen,d daher durch ? unverzweigt überlagert, siehe 7.6.1-2. Nachdem es Klein gelungen war, für die durch .. = ..(. - 1) definierte Modulfl?che .. eine unverzweigte überlagerung E → .. zu konstruieren und diese Konstruktion auf ?hnlich definierte Fl?chen auszudehnen, vermutete er, da? alle durch Po- lynom
15#
發(fā)表于 2025-3-24 02:58:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:57 | 只看該作者
Der Periodentorus,grale auszudehnen. Er entdeckte an Beispielen, da? für das Geschlecht . die Abelschen Funktionen, d.h. die Umkehrfunktionen Abelscher Integrale von . komplexen Variablen abh?ngen und 2?.-fach periodisch sind, also modern ausgedrückt einen komplex .-dimensionalen Torus als Definitionsbereich haben. W
17#
發(fā)表于 2025-3-24 12:52:13 | 只看該作者
18#
發(fā)表于 2025-3-24 18:00:46 | 只看該作者
19#
發(fā)表于 2025-3-24 19:05:24 | 只看該作者
Textbook 2009Latest editionen und reellen Analysis sowie der Algebra zusammenwirken, um die reichhaltige Struktur dieser Fl?chen aufzukl?ren. Viele Beispiele und Bilder, die in der historischen Entwicklung eine Rolle spielten, erg?nzen die Darstellung. Das Buch beruht auf Vorlesungen und Seminaren im Anschlu? an eine Einführu
20#
發(fā)表于 2025-3-25 02:36:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吕梁市| 澄城县| 黑山县| 开鲁县| 安乡县| 上栗县| 陕西省| 聂拉木县| 金湖县| 榕江县| 湟源县| 藁城市| 和硕县| 墨玉县| 望城县| 清流县| 五常市| 独山县| 漳浦县| 贵南县| 巨野县| 葵青区| 定州市| 福贡县| 当涂县| 五峰| 宝丰县| 奎屯市| 上虞市| 乌兰县| 郁南县| 德庆县| 图木舒克市| 本溪市| 大余县| 专栏| 奉化市| 香格里拉县| 白城市| 苗栗市| 仙游县|