找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Topology and Geometric Structures on Manifolds; Krzysztof Galicki,Santiago R. Simanca Book 2009 Birkh?user Boston 2009 Area.Coh

[復(fù)制鏈接]
樓主: Garfield
21#
發(fā)表于 2025-3-25 07:02:30 | 只看該作者
Riemannian Topology and Geometric Structures on Manifolds978-0-8176-4743-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
22#
發(fā)表于 2025-3-25 10:20:43 | 只看該作者
,Quaternionic K?hler Moduli Spaces,ra and Sabharwal. This class yields an example in real dimension 4. for every projective special K?hler manifold of real dimension 2.-2 and can be applied in particular to the case of the moduli space of complex structures on a Calabi—Yau threefold.
23#
發(fā)表于 2025-3-25 12:47:43 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:05:57 | 只看該作者
Positive Sasakian Structures on 5-Manifolds,The aim of this paper is to study 5-manifolds that carry a positive Sasakian structure. Strong restrictions are derived for the integral hemology groups. In some cases, all positive sasakian structures are classified. A key step is the study of log Del Pezzo surfaces whose boundary divisor contains positive genus curves.
26#
發(fā)表于 2025-3-26 03:38:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:52 | 只看該作者
Krzysztof Galicki,Santiago R. SimancaFocuses on fundamental ideas and recent advances.Includes and discusses open problems in Riemannian topology and related areas.Contains original survey articles by distinguished researchers
28#
發(fā)表于 2025-3-26 09:45:02 | 只看該作者
Specifically, consensus and sharing problems are formulated under the ADMM framework for horizontally and vertically partitioned data, respectively. We further introduce secure multiparty computation (SMC) protocols to protect the intermediary results in communication. We also introduce asynchronous
29#
發(fā)表于 2025-3-26 13:36:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:43:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌乐县| 泸州市| 威宁| 水富县| 上林县| 淄博市| 屏东县| 兰考县| 临泽县| 集安市| 蓬莱市| 郧西县| 分宜县| 政和县| 乐清市| 霍山县| 五寨县| 葵青区| 攀枝花市| 蒲城县| 获嘉县| 青田县| 襄汾县| 丘北县| 襄城县| 巍山| 西吉县| 雷州市| 吕梁市| 沁阳市| 盘锦市| 武定县| 邹城市| 宁南县| 拜城县| 丹凤县| 大兴区| 衡水市| 肇源县| 南城县| 浏阳市|