找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Topology and Geometric Structures on Manifolds; Krzysztof Galicki,Santiago R. Simanca Book 2009 Birkh?user Boston 2009 Area.Coh

[復(fù)制鏈接]
樓主: Garfield
21#
發(fā)表于 2025-3-25 07:02:30 | 只看該作者
Riemannian Topology and Geometric Structures on Manifolds978-0-8176-4743-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
22#
發(fā)表于 2025-3-25 10:20:43 | 只看該作者
,Quaternionic K?hler Moduli Spaces,ra and Sabharwal. This class yields an example in real dimension 4. for every projective special K?hler manifold of real dimension 2.-2 and can be applied in particular to the case of the moduli space of complex structures on a Calabi—Yau threefold.
23#
發(fā)表于 2025-3-25 12:47:43 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:05:57 | 只看該作者
Positive Sasakian Structures on 5-Manifolds,The aim of this paper is to study 5-manifolds that carry a positive Sasakian structure. Strong restrictions are derived for the integral hemology groups. In some cases, all positive sasakian structures are classified. A key step is the study of log Del Pezzo surfaces whose boundary divisor contains positive genus curves.
26#
發(fā)表于 2025-3-26 03:38:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:52 | 只看該作者
Krzysztof Galicki,Santiago R. SimancaFocuses on fundamental ideas and recent advances.Includes and discusses open problems in Riemannian topology and related areas.Contains original survey articles by distinguished researchers
28#
發(fā)表于 2025-3-26 09:45:02 | 只看該作者
Specifically, consensus and sharing problems are formulated under the ADMM framework for horizontally and vertically partitioned data, respectively. We further introduce secure multiparty computation (SMC) protocols to protect the intermediary results in communication. We also introduce asynchronous
29#
發(fā)表于 2025-3-26 13:36:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:43:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万安县| 北京市| 佛冈县| 横峰县| 长岭县| 桃江县| 柘城县| 庆元县| 任丘市| 炎陵县| 本溪市| 东莞市| 深水埗区| 唐山市| 四川省| 威海市| 中阳县| 土默特右旗| 尚义县| 登封市| 沙田区| 遂溪县| 酉阳| 台前县| 巴林左旗| 利辛县| 崇州市| 德令哈市| 彰武县| 亳州市| 辉县市| 都江堰市| 卓资县| 库尔勒市| 菏泽市| 霞浦县| 西峡县| 余姚市| 东辽县| 元氏县| 潞西市|