找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Topology and Geometric Structures on Manifolds; Krzysztof Galicki,Santiago R. Simanca Book 2009 Birkh?user Boston 2009 Area.Coh

[復制鏈接]
查看: 33345|回復: 46
樓主
發(fā)表于 2025-3-21 17:27:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Topology and Geometric Structures on Manifolds
編輯Krzysztof Galicki,Santiago R. Simanca
視頻videohttp://file.papertrans.cn/831/830323/830323.mp4
概述Focuses on fundamental ideas and recent advances.Includes and discusses open problems in Riemannian topology and related areas.Contains original survey articles by distinguished researchers
叢書名稱Progress in Mathematics
圖書封面Titlebook: Riemannian Topology and Geometric Structures on Manifolds;  Krzysztof Galicki,Santiago R. Simanca Book 2009 Birkh?user Boston 2009 Area.Coh
描述.Riemannian Topology and Geometric Structures on Manifolds. results from a similarly entitled conference held at the University of New Mexico in Albuquerque. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, K?hler and Sasaki geometry, and their interrelation to mathematical physics, notably M and superstring theory. Focusing on these fundamental ideas, this collection presents articles with original results, and plausible problems of interest for future research...Contributors: C.P. Boyer, J. Cheeger, X. Dai, K. Galicki, P. Gauduchon, N. Hitchin, L. Katzarkov, J. Kollár, C. LeBrun, P. Rukimbira, S.R. Simanca, J. Sparks, C. van Coevering, and W. Ziller..
出版日期Book 2009
關鍵詞Area; Cohomology; K?hler geometry; Sasakian geometry; Volume; convex geometry; curvature; manifold; sectiona
版次1
doihttps://doi.org/10.1007/978-0-8176-4743-8
isbn_ebook978-0-8176-4743-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 2009
The information of publication is updating

書目名稱Riemannian Topology and Geometric Structures on Manifolds影響因子(影響力)




書目名稱Riemannian Topology and Geometric Structures on Manifolds影響因子(影響力)學科排名




書目名稱Riemannian Topology and Geometric Structures on Manifolds網(wǎng)絡公開度




書目名稱Riemannian Topology and Geometric Structures on Manifolds網(wǎng)絡公開度學科排名




書目名稱Riemannian Topology and Geometric Structures on Manifolds被引頻次




書目名稱Riemannian Topology and Geometric Structures on Manifolds被引頻次學科排名




書目名稱Riemannian Topology and Geometric Structures on Manifolds年度引用




書目名稱Riemannian Topology and Geometric Structures on Manifolds年度引用學科排名




書目名稱Riemannian Topology and Geometric Structures on Manifolds讀者反饋




書目名稱Riemannian Topology and Geometric Structures on Manifolds讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:04 | 只看該作者
Jeff Cheeger,Xianzhe Daiied and modeled since the nineteenth century and currently applied in almost all branches of sciences and engineering including social sciences. The development of computers and scientific/numerical methods has accelerated the pace of new developments in modeling both linear and nonlinear dynamical
板凳
發(fā)表于 2025-3-22 03:47:25 | 只看該作者
Paul Gauduchon (SHM) plays a significant role in preventing and mitigating the course of structural damage. In this work, a multi-scale SHM framework based on Hadoop Ecosystem (MS-SHM-Hadoop) to monitor and evaluate the serviceability of civil infrastructure is proposed. Through utilizing fault-tolerant distribut
地板
發(fā)表于 2025-3-22 07:10:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:53:34 | 只看該作者
Book 2009uerque. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, K?hler and Sasaki geometry, and their interrelation to mathematical physics, notably M and superstring theory. Focusing on these fundamental ideas, this collection presents articles
6#
發(fā)表于 2025-3-22 13:29:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:03:52 | 只看該作者
0743-1643 inal survey articles by distinguished researchers.Riemannian Topology and Geometric Structures on Manifolds. results from a similarly entitled conference held at the University of New Mexico in Albuquerque. The various contributions to this volume discuss recent advances in the areas of positive sec
8#
發(fā)表于 2025-3-23 00:41:53 | 只看該作者
,,-Cohomology of Spaces with Nonisolated Conical Singularities and Nonmultiplicativity of the Signagularities is identified with a topological invariant of the link fibration of the singularities. This invariant measures the failure of the signature to behave multiplicatively for fibrations for which the boundary of the fiber is nonempty. The result extends easily to cusp singularities and can be
9#
發(fā)表于 2025-3-23 04:06:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:28:32 | 只看該作者
,Quaternionic K?hler Moduli Spaces,ra and Sabharwal. This class yields an example in real dimension 4. for every projective special K?hler manifold of real dimension 2.-2 and can be applied in particular to the case of the moduli space of complex structures on a Calabi—Yau threefold.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
万州区| 齐齐哈尔市| 木兰县| 高安市| 英山县| 临颍县| 阳泉市| 尚志市| 荆门市| 余姚市| 永登县| 舟山市| 揭西县| 镇巴县| 汝阳县| 琼中| 遂溪县| 军事| 洞口县| 东丽区| 兰考县| 岑溪市| 浏阳市| 青海省| 含山县| 滕州市| 社旗县| 寿宁县| 芮城县| 徐汇区| 清原| 瓦房店市| 根河市| 阿坝县| 惠州市| 姜堰市| 吉木萨尔县| 馆陶县| 定日县| 三门县| 乃东县|