找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry and Geometric Analysis; Jürgen Jost Textbook 19982nd edition Springer-Verlag Berlin Heidelberg 1998 Morse theory.Riema

[復(fù)制鏈接]
查看: 48991|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:38:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Geometry and Geometric Analysis
編輯Jürgen Jost
視頻videohttp://file.papertrans.cn/831/830315/830315.mp4
概述Jost‘s book attempts a synthesis of geometric and analytic method on the way to Riemannian geometry and the author achieves this goal..The result is an excellent book.".Acta Scientiarum Mathematicarum
叢書名稱Universitext
圖書封面Titlebook: Riemannian Geometry and Geometric Analysis;  Jürgen Jost Textbook 19982nd edition Springer-Verlag Berlin Heidelberg 1998 Morse theory.Riema
描述From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. It is a good introduction to Riemannian geometry. The book is made more interesting by the perspectives in various sections. where the author mentions the history and development of the material and provides the reader with references." Math. Reviews. The 2nd ed. includes new material on Ginzburg-Landau, Seibert-Witten functionals, spin geometry, Dirac operators.
出版日期Textbook 19982nd edition
關(guān)鍵詞Morse theory; Riemannian geometry; Seiber-Witten functionals; curvature; harmonic maps; manifold; symmetri
版次2
doihttps://doi.org/10.1007/978-3-662-22385-7
isbn_ebook978-3-662-22385-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

書目名稱Riemannian Geometry and Geometric Analysis影響因子(影響力)




書目名稱Riemannian Geometry and Geometric Analysis影響因子(影響力)學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis網(wǎng)絡(luò)公開度




書目名稱Riemannian Geometry and Geometric Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis被引頻次




書目名稱Riemannian Geometry and Geometric Analysis被引頻次學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis年度引用




書目名稱Riemannian Geometry and Geometric Analysis年度引用學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis讀者反饋




書目名稱Riemannian Geometry and Geometric Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:52:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:50:02 | 只看該作者
地板
發(fā)表于 2025-3-22 04:47:03 | 只看該作者
Foundational Material,A . is a set . together with a family . of subsets of . satisfying the following properties:
5#
發(fā)表于 2025-3-22 08:51:11 | 只看該作者
De Rham Cohomology and Harmonic Differential Forms,We need some preparations from linear algebra. Let . be a real vector space with a scalar product 〈·, ·〉, and let ... be the .-fold exterior product of ..
6#
發(fā)表于 2025-3-22 14:21:15 | 只看該作者
7#
發(fā)表于 2025-3-22 17:29:17 | 只看該作者
Geodesics and Jacobi Fields,We start with a preliminary technical remark:
8#
發(fā)表于 2025-3-22 23:08:16 | 只看該作者
,Symmetric Spaces and K?hler Manifolds,We consider the complex vector space ?... A complex linear subspace of ?.. of complex dimension one is called line. We define complex projective space ??. as the space of all lines in ?...
9#
發(fā)表于 2025-3-23 03:09:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:13:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 呼图壁县| 广安市| 冕宁县| 松阳县| 汕尾市| 盱眙县| 晴隆县| 元阳县| 西贡区| 离岛区| 江津市| 昭通市| 天峨县| 阳西县| 苗栗县| 巩留县| 大悟县| 上高县| 万载县| 湖南省| 鄂伦春自治旗| 蓬溪县| 陈巴尔虎旗| 华亭县| 获嘉县| 离岛区| 阜南县| 临洮县| 武强县| 桃江县| 奎屯市| 沿河| 郯城县| 龙南县| 尼玛县| 津南区| 勃利县| 淮南市| 沽源县| 延寿县|