找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry and Geometric Analysis; Jürgen Jost Textbook 19982nd edition Springer-Verlag Berlin Heidelberg 1998 Morse theory.Riema

[復(fù)制鏈接]
查看: 48992|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:38:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Riemannian Geometry and Geometric Analysis
編輯Jürgen Jost
視頻videohttp://file.papertrans.cn/831/830315/830315.mp4
概述Jost‘s book attempts a synthesis of geometric and analytic method on the way to Riemannian geometry and the author achieves this goal..The result is an excellent book.".Acta Scientiarum Mathematicarum
叢書名稱Universitext
圖書封面Titlebook: Riemannian Geometry and Geometric Analysis;  Jürgen Jost Textbook 19982nd edition Springer-Verlag Berlin Heidelberg 1998 Morse theory.Riema
描述From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. It is a good introduction to Riemannian geometry. The book is made more interesting by the perspectives in various sections. where the author mentions the history and development of the material and provides the reader with references." Math. Reviews. The 2nd ed. includes new material on Ginzburg-Landau, Seibert-Witten functionals, spin geometry, Dirac operators.
出版日期Textbook 19982nd edition
關(guān)鍵詞Morse theory; Riemannian geometry; Seiber-Witten functionals; curvature; harmonic maps; manifold; symmetri
版次2
doihttps://doi.org/10.1007/978-3-662-22385-7
isbn_ebook978-3-662-22385-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

書目名稱Riemannian Geometry and Geometric Analysis影響因子(影響力)




書目名稱Riemannian Geometry and Geometric Analysis影響因子(影響力)學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis網(wǎng)絡(luò)公開度




書目名稱Riemannian Geometry and Geometric Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis被引頻次




書目名稱Riemannian Geometry and Geometric Analysis被引頻次學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis年度引用




書目名稱Riemannian Geometry and Geometric Analysis年度引用學(xué)科排名




書目名稱Riemannian Geometry and Geometric Analysis讀者反饋




書目名稱Riemannian Geometry and Geometric Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:52:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:50:02 | 只看該作者
地板
發(fā)表于 2025-3-22 04:47:03 | 只看該作者
Foundational Material,A . is a set . together with a family . of subsets of . satisfying the following properties:
5#
發(fā)表于 2025-3-22 08:51:11 | 只看該作者
De Rham Cohomology and Harmonic Differential Forms,We need some preparations from linear algebra. Let . be a real vector space with a scalar product 〈·, ·〉, and let ... be the .-fold exterior product of ..
6#
發(fā)表于 2025-3-22 14:21:15 | 只看該作者
7#
發(fā)表于 2025-3-22 17:29:17 | 只看該作者
Geodesics and Jacobi Fields,We start with a preliminary technical remark:
8#
發(fā)表于 2025-3-22 23:08:16 | 只看該作者
,Symmetric Spaces and K?hler Manifolds,We consider the complex vector space ?... A complex linear subspace of ?.. of complex dimension one is called line. We define complex projective space ??. as the space of all lines in ?...
9#
發(fā)表于 2025-3-23 03:09:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:13:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安西县| 靖西县| 定西市| 湄潭县| 巴中市| 荔浦县| 滨海县| 阿图什市| 闽清县| 上栗县| 鄂州市| 兴文县| 拉孜县| 岑巩县| 九寨沟县| 玛纳斯县| 年辖:市辖区| 商城县| 梨树县| 海宁市| 高邮市| 秦安县| 庄浪县| 孟津县| 蚌埠市| 平乡县| 祥云县| 建德市| 葵青区| 揭东县| 福州市| 尼木县| 阿荣旗| 清远市| 合作市| 即墨市| 澜沧| 农安县| 延津县| 兴业县| 英吉沙县|