找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Peter Petersen Textbook 19981st edition Springer Science+Business Media New York 1998 Riemannian geometry.Spinor.Tens

[復制鏈接]
樓主: hearing-aid
11#
發(fā)表于 2025-3-23 12:22:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:05:44 | 只看該作者
13#
發(fā)表于 2025-3-23 20:51:04 | 只看該作者
14#
發(fā)表于 2025-3-24 02:09:38 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:58 | 只看該作者
Ricci Curvature Comparison,developed: relative volume comparison and weak upper bounds for the Laplacian of distance functions. With these techniques we shall show numerous results on restrictions of fundamental groups of such spaces and also present a different proof of the estimate for the first Betti number by Bochner. The
16#
發(fā)表于 2025-3-24 08:27:45 | 只看該作者
Convergence, a sequence of Riemannian manifolds, or more generally metric spaces, to converge to a space. In the first section we develop the weakest convergence concept: Gromov-Hausdorff convergence. We then go on to explain some of the elliptic regularity theory we need for some of the later developments. We
17#
發(fā)表于 2025-3-24 11:34:32 | 只看該作者
Sectional Curvature Comparison II,is critical point technique is used in the proofs of all the big theorems in this chapter. The other important technique comes from Toponogov’s theorem, which we prove in the next section. The first applications of these new ideas are to sphere theorems. We then prove the soul theorem of Cheeger and
18#
發(fā)表于 2025-3-24 16:01:24 | 只看該作者
19#
發(fā)表于 2025-3-24 20:35:13 | 只看該作者
Geodesics and Distance,are smooth and therefore show the existence of the kind of distance functions we worked with earlier. In the last section we give some metric characterizations of Riemannian isometries and submersions.
20#
發(fā)表于 2025-3-25 02:36:38 | 只看該作者
Symmetric Spaces and Holonomy,paces are related Finally, we classify all compact manifolds with nonnegative curvature operator. We shall in a few places use results from Chapter 9. They will therefore have to be taken for granted at this point.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
双鸭山市| 高邮市| 锦屏县| 和龙市| 五常市| 突泉县| 芜湖县| 石景山区| 涪陵区| 临猗县| 乐东| 宜州市| 宁晋县| 英德市| 抚顺市| 特克斯县| 文登市| 昭苏县| 松阳县| 五原县| 旅游| 上犹县| 邯郸县| 迁西县| 黄平县| 衡阳县| 平陆县| 山东省| 西吉县| 淮北市| 崇左市| 广平县| 沙坪坝区| 虎林市| 渑池县| 哈巴河县| 康马县| 策勒县| 威远县| 禹城市| 仁怀市|