找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Peter Petersen Textbook 19981st edition Springer Science+Business Media New York 1998 Riemannian geometry.Spinor.Tens

[復(fù)制鏈接]
查看: 37172|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:24:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Riemannian Geometry
編輯Peter Petersen
視頻videohttp://file.papertrans.cn/831/830309/830309.mp4
叢書(shū)名稱(chēng)Graduate Texts in Mathematics
圖書(shū)封面Titlebook: Riemannian Geometry;  Peter Petersen Textbook 19981st edition Springer Science+Business Media New York 1998 Riemannian geometry.Spinor.Tens
描述This book is meant to be an introduction to Riemannian geometry. The reader is assumed to have some knowledge of standard manifold theory, including basic theory of tensors, forms, and Lie groups. At times we shall also assume familiarity with algebraic topology and de Rham cohomology. Specifically, we recommend that the reader is familiar with texts like [14] or[76, vol. 1]. For the readers who have only learned something like the first two chapters of [65], we have an appendix which covers Stokes‘ theorem, Cech cohomology, and de Rham cohomology. The reader should also have a nodding acquaintance with ordinary differential equations. For this, a text like [59] is more than sufficient. Most of the material usually taught in basic Riemannian geometry, as well as several more advanced topics, is presented in this text. Many of the theorems from Chapters 7 to 11 appear for the first time in textbook form. This is particularly surprising as we have included essentially only the material students ofRiemannian geometry must know. The approach we have taken deviates in some ways from the standard path. First and foremost, we do not discuss variational calculus, which is usually the sine
出版日期Textbook 19981st edition
關(guān)鍵詞Riemannian geometry; Spinor; Tensor; curvature; manifold
版次1
doihttps://doi.org/10.1007/978-1-4757-6434-5
isbn_ebook978-1-4757-6434-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1998
The information of publication is updating

書(shū)目名稱(chēng)Riemannian Geometry影響因子(影響力)




書(shū)目名稱(chēng)Riemannian Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Riemannian Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Riemannian Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Riemannian Geometry被引頻次




書(shū)目名稱(chēng)Riemannian Geometry被引頻次學(xué)科排名




書(shū)目名稱(chēng)Riemannian Geometry年度引用




書(shū)目名稱(chēng)Riemannian Geometry年度引用學(xué)科排名




書(shū)目名稱(chēng)Riemannian Geometry讀者反饋




書(shū)目名稱(chēng)Riemannian Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:54 | 只看該作者
Curvature,ng curvature is the central theme of Riemannian geometry. The idea of a Riemannian metric having curvature, while intuitively appealing and natural, is for most people the stumbling block for further progress into the realm of geometry.
板凳
發(fā)表于 2025-3-22 02:34:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:16:41 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:01 | 只看該作者
6#
發(fā)表于 2025-3-22 15:11:49 | 只看該作者
Sectional Curvature Comparison II, Gromoll. Next, we discuss Gromov’s finiteness theorem for bounds on Betti numbers and generators for the fundamental group Finally, we show that these techniques can be adapted to prove the Grove-Petersen homotopy finiteness theorem.
7#
發(fā)表于 2025-3-22 17:35:55 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:20 | 只看該作者
Curvature,confine ourselves to infinitesimal considerations. The most important and often also least understood object of Riemannian geometry is that of the Riemannian connection. From this concept it will be possible to define curvature and more familiar items like gradients and Hessians of functions. Studyi
9#
發(fā)表于 2025-3-23 03:11:36 | 只看該作者
10#
發(fā)表于 2025-3-23 06:01:17 | 只看該作者
Hypersurfaces,nvex im-mersions are embeddings of spheres. We then establish a connection between convexity and positivity of the intrinsic curvatures. This connection will enable us to see that ?.. and the Berger spheres are not even locally hypersurfaces in Euclidean space. We give a brief description of some cl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 巴林右旗| 揭西县| 广汉市| 察雅县| 抚远县| 高密市| 阿尔山市| 平安县| 南平市| 赤水市| 乌海市| 泰宁县| 伽师县| 康平县| 广昌县| 繁昌县| 沁阳市| 罗定市| 旌德县| 吉林省| 洛南县| 临清市| 凤凰县| 上犹县| 泰顺县| 屏东市| 大荔县| 鄢陵县| 阿荣旗| 华池县| 莱西市| 定安县| 舒城县| 南涧| 瑞金市| 大悟县| 瑞昌市| 旌德县| 遂平县| 察隅县|