找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 19th International C Andrei Voronkov Conference proceedings 2008 Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:19:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:03:57 | 只看該作者
23#
發(fā)表于 2025-3-25 15:32:54 | 只看該作者
24#
發(fā)表于 2025-3-25 19:14:29 | 只看該作者
25#
發(fā)表于 2025-3-25 22:54:51 | 只看該作者
Usable Rules for Context-Sensitive Rewrite Systems,restricted class of systems. In this paper, we introduce a notion of usable rules that can be used in proofs of termination of CSR with arbitrary systems. Our benchmarks show that the performance of the CS-DP approach is much better when such usable rules are considered in proofs of termination of CSR.
26#
發(fā)表于 2025-3-26 00:57:27 | 只看該作者
27#
發(fā)表于 2025-3-26 08:09:44 | 只看該作者
Linear-algebraic ,-calculus: higher-order, encodings, and confluence.,ugh the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the field of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally we prove the confluence of the calculus, this is our main result.
28#
發(fā)表于 2025-3-26 10:55:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:09:55 | 只看該作者
30#
發(fā)表于 2025-3-26 17:21:08 | 只看該作者
Diagram Rewriting for Orthogonal Matrices: A Study of Critical Peaks,to obtain the algebraic properties of ., we study the confluence of critical peaks (or critical pairs) for our rewrite system. For that purpose, we introduce . describing the calculation of angles of rotations generated by rewriting. In particular, one of those properties is related to the . (also called Zamolodchikov equation).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊川县| 夏河县| 松江区| 本溪| 印江| 鲜城| 昌都县| 仙桃市| 满洲里市| 屏东县| 商都县| 商水县| 汝州市| 景洪市| 新泰市| 班玛县| 汝阳县| 宁陕县| 漳州市| 屏山县| 平安县| 寻甸| 渝北区| 四平市| 茂名市| 万全县| 集安市| 吉林省| 崇左市| 志丹县| 鲜城| 永吉县| 通河县| 若羌县| 马尔康县| 菏泽市| 孟州市| 陆河县| 万年县| 神农架林区| 大足县|