找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rethinking Quaternions; Ron Goldman Book 2010 Springer Nature Switzerland AG 2010

[復制鏈接]
樓主: 不正常
21#
發(fā)表于 2025-3-25 05:21:29 | 只看該作者
Clifford Algebras and Quaternions only the sum, but also the product of every two elements in the algebra is defined. Let .,…,. be an orthonormal basis for .. Then the 2. canonical generators (basis vectors) of the Clifford algebra for . are denoted by the products:.Notice that there are . products with exactly . factors, so there
22#
發(fā)表于 2025-3-25 11:32:19 | 只看該作者
operands and operators—Mass-Points and Quaternions of the even dimensional elements, the quaternions ., and one consisting of the odd dimensional elements, the duals . of the quaternions. Let.) = the Clifford algebra of .). = the even dimensional elements of . (R.) ? .). = the odd dimensional element of .(R.) ? ..
23#
發(fā)表于 2025-3-25 13:42:20 | 只看該作者
24#
發(fā)表于 2025-3-25 16:01:43 | 只看該作者
Goals and Motivationation so that we can solve linear equations (see Section 4, especially Exercises 4.9-4.12). This void makes the study of transformations in higher dimensions more cumbersome than in lower dimensions; typically we need to resort to matrix methods rather than rely on direct manipulation of vector products.
25#
發(fā)表于 2025-3-25 23:22:03 | 只看該作者
Book 2010tions: to increase speed and reduce storage for calculations involving rotations, to avoid distortions arising from numerical inaccuracies caused by floating point computations with rotations, and to interpolate between two rotations for key frame animation. Yet while the formal algebra of quaternio
26#
發(fā)表于 2025-3-26 03:58:17 | 只看該作者
27#
發(fā)表于 2025-3-26 07:50:31 | 只看該作者
28#
發(fā)表于 2025-3-26 11:54:06 | 只看該作者
978-3-031-79548-0Springer Nature Switzerland AG 2010
29#
發(fā)表于 2025-3-26 16:13:28 | 只看該作者
30#
發(fā)表于 2025-3-26 20:17:25 | 只看該作者
Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography and http://image.papertrans.cn/r/image/829109.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
连江县| 隆子县| 高安市| 霍城县| 探索| 浠水县| 东兰县| 霍山县| 新宾| 万盛区| 建阳市| 临西县| 万宁市| 公主岭市| 九龙城区| 海口市| 霍林郭勒市| 安义县| 吉木萨尔县| 江阴市| 文山县| 都昌县| 若羌县| 万年县| 青川县| 饶阳县| 南昌县| 邹平县| 昆明市| 石景山区| 罗定市| 翁牛特旗| 盐源县| 平邑县| 汝州市| 神农架林区| 政和县| 庄河市| 崇明县| 莆田市| 调兵山市|