找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resource-Efficient Medical Image Analysis; First MICCAI Worksho Xinxing Xu,Xiaomeng Li,Huazhu Fu Conference proceedings 2022 The Editor(s)

[復(fù)制鏈接]
樓主: energy
31#
發(fā)表于 2025-3-26 23:01:55 | 只看該作者
Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Efficie disease (AD), mild cognitive impairment (MCI) or being cognitive normal (CN). In this research, we represent Resting-State brain activity in Regions-of-Interest (ROI) by subsets of anatomical region voxels formed by segments of a whole brain bounding box Hilbert curve resulting in an average 5× few
32#
發(fā)表于 2025-3-27 01:10:00 | 只看該作者
33#
發(fā)表于 2025-3-27 07:13:27 | 只看該作者
,Leverage Supervised and?Self-supervised Pretrain Models for?Pathological Survival Analysis via?a?Sig in pathological image analyses. Most existing studies have focused on developing more powerful pretrained models, which are increasingly unscalable for academic institutes. Very few, if any, studies have investigated how to take advantage of existing, yet heterogeneous, pretrained models for downs
34#
發(fā)表于 2025-3-27 11:06:14 | 只看該作者
Pathological Image Contrastive Self-supervised Learning,e in many tasks in the field of computer vision. Contrastive learning methods build pre-training weight parameters by crafting positive/negative samples and optimizing their distance in the feature space. It is easy to construct positive/negative samples on natural images, but the methods cannot dir
35#
發(fā)表于 2025-3-27 14:27:51 | 只看該作者
36#
發(fā)表于 2025-3-27 17:51:13 | 只看該作者
37#
發(fā)表于 2025-3-28 00:46:39 | 只看該作者
,A Self-attentive Meta-learning Approach for?Image-Based Few-Shot Disease Detection,er medical knowledge from common diseases to low prevalence cases using meta-learning. Indeed, compared to natural images, medical images vary less diversely from one image to another, with complex patterns and less semantic information. Hence, extracting clinically relevant features and learning a
38#
發(fā)表于 2025-3-28 04:14:04 | 只看該作者
,Facing Annotation Redundancy: OCT Layer Segmentation with?only?10 Annotated Pixels per?Layer,for improved accuracy is driving the use of increasingly large dataset with fully pixel-level layer annotations. But the manual annotation process is expensive and tedious, further, the annotators also need sufficient medical knowledge which brings a great burden on the doctors. We observe that ther
39#
發(fā)表于 2025-3-28 10:04:21 | 只看該作者
40#
發(fā)表于 2025-3-28 11:38:13 | 只看該作者
Pathological Image Contrastive Self-supervised Learning,earning on histopathological images. Results on the PatchCamelyon benchmark show that our method can improve model accuracy up to 6% while reducing the training costs, as well as reducing reliance on labeled data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳市| 信丰县| 永济市| 高密市| 林周县| 临高县| 余江县| 昂仁县| 定陶县| 天镇县| 贵州省| 永济市| 莱阳市| 天峻县| 资源县| 晋州市| 沅陵县| 新和县| 桐城市| 桐梓县| 台中市| 乐安县| 抚州市| 金川县| 仲巴县| 拜城县| 英吉沙县| 常德市| 丰都县| 乐都县| 尚志市| 兴仁县| 湟中县| 陆良县| 罗平县| 苍梧县| 浦县| 湖州市| 正阳县| 东兰县| 济源市|