找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resource-Efficient Medical Image Analysis; First MICCAI Worksho Xinxing Xu,Xiaomeng Li,Huazhu Fu Conference proceedings 2022 The Editor(s)

[復(fù)制鏈接]
樓主: energy
21#
發(fā)表于 2025-3-25 05:32:34 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:24 | 只看該作者
0302-9743 in conjunction with MICCAI 2022, in September 2022 as a hybrid event. ..REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations..978-3-031-
23#
發(fā)表于 2025-3-25 13:28:55 | 只看該作者
0302-9743 ims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations..978-3-031-16875-8978-3-031-16876-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 18:19:08 | 只看該作者
,An Efficient Defending Mechanism Against Image Attacking on?Medical Image Segmentation Models, models from attacks. Our result on several medical well-known benchmark datasets shows that the proposed defending mechanism to enhance the segmentation models is effective with high scores and better compared to other strong methods.
25#
發(fā)表于 2025-3-25 23:32:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:04:11 | 只看該作者
,Multi-task Semi-supervised Learning for?Vascular Network Segmentation and?Renal Cell Carcinoma Clasentation from Hematoxylin and Eosin (H &E) staining histopathological images is still a challenge due to the background complexity. Moreover, there is a lack of large manually annotated vascular network databases. In this paper, we propose a method that reduces reliance on labeled data through semi-
27#
發(fā)表于 2025-3-26 05:49:33 | 只看該作者
Self-supervised Antigen Detection Artificial Intelligence (SANDI),cell phenotyping in multiplex images require extensive annotation workload due to the need for fully supervised training. To overcome this challenge, we develop SANDI, a self-supervised-based pipeline that learns intrinsic similarities in unlabeled cell images to mitigate the requirement for expert
28#
發(fā)表于 2025-3-26 09:43:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:10:20 | 只看該作者
,Single Domain Generalization via?Spontaneous Amplitude Spectrum Diversification, realistic-yet-challenging scenario as a new research line, termed single domain generalization (single-DG), which aims to generalize a model trained on single source domain to multiple target domains. The existing single-DG approaches tried to address the problem by generating diverse samples using
30#
發(fā)表于 2025-3-26 19:23:28 | 只看該作者
,Triple-View Feature Learning for?Medical Image Segmentation,h labelling cost. We propose TriSegNet, a semi-supervised semantic segmentation framework. It uses . feature learning on a limited amount of labelled data and a large amount of unlabeled data. The triple-view architecture consists of three pixel-level classifiers and a low-level shared-weight learni
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚宁县| 宜宾市| 漳州市| 盐山县| 温泉县| 筠连县| 钦州市| 合山市| 廊坊市| 四会市| 新平| 思南县| 延长县| 滕州市| 武义县| 尉氏县| 山阳县| 七台河市| 临清市| 嘉义县| 鄂伦春自治旗| 沙湾县| 英吉沙县| 南昌市| 枣阳市| 莱州市| 蕲春县| 岳普湖县| 福贡县| 乌苏市| 寻甸| 绥滨县| 荆州市| 新宁县| 嘉定区| 武冈市| 柳河县| 炎陵县| 武威市| 页游| 江达县|