找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resource-Efficient Medical Image Analysis; First MICCAI Worksho Xinxing Xu,Xiaomeng Li,Huazhu Fu Conference proceedings 2022 The Editor(s)

[復制鏈接]
樓主: energy
21#
發(fā)表于 2025-3-25 05:32:34 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:24 | 只看該作者
0302-9743 in conjunction with MICCAI 2022, in September 2022 as a hybrid event. ..REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations..978-3-031-
23#
發(fā)表于 2025-3-25 13:28:55 | 只看該作者
0302-9743 ims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations..978-3-031-16875-8978-3-031-16876-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 18:19:08 | 只看該作者
,An Efficient Defending Mechanism Against Image Attacking on?Medical Image Segmentation Models, models from attacks. Our result on several medical well-known benchmark datasets shows that the proposed defending mechanism to enhance the segmentation models is effective with high scores and better compared to other strong methods.
25#
發(fā)表于 2025-3-25 23:32:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:04:11 | 只看該作者
,Multi-task Semi-supervised Learning for?Vascular Network Segmentation and?Renal Cell Carcinoma Clasentation from Hematoxylin and Eosin (H &E) staining histopathological images is still a challenge due to the background complexity. Moreover, there is a lack of large manually annotated vascular network databases. In this paper, we propose a method that reduces reliance on labeled data through semi-
27#
發(fā)表于 2025-3-26 05:49:33 | 只看該作者
Self-supervised Antigen Detection Artificial Intelligence (SANDI),cell phenotyping in multiplex images require extensive annotation workload due to the need for fully supervised training. To overcome this challenge, we develop SANDI, a self-supervised-based pipeline that learns intrinsic similarities in unlabeled cell images to mitigate the requirement for expert
28#
發(fā)表于 2025-3-26 09:43:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:10:20 | 只看該作者
,Single Domain Generalization via?Spontaneous Amplitude Spectrum Diversification, realistic-yet-challenging scenario as a new research line, termed single domain generalization (single-DG), which aims to generalize a model trained on single source domain to multiple target domains. The existing single-DG approaches tried to address the problem by generating diverse samples using
30#
發(fā)表于 2025-3-26 19:23:28 | 只看該作者
,Triple-View Feature Learning for?Medical Image Segmentation,h labelling cost. We propose TriSegNet, a semi-supervised semantic segmentation framework. It uses . feature learning on a limited amount of labelled data and a large amount of unlabeled data. The triple-view architecture consists of three pixel-level classifiers and a low-level shared-weight learni
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
元氏县| 剑河县| 临高县| 乌鲁木齐县| 秀山| 嵊州市| 平阳县| 凤山县| 吴堡县| 蓝山县| 城固县| 广汉市| 团风县| 西丰县| 定襄县| 吉水县| 湟中县| 茌平县| 长白| 黄陵县| 林口县| 宜州市| 孝义市| 墨脱县| 宁海县| 西畴县| 临桂县| 富顺县| 天气| 朝阳县| 新源县| 金秀| 韩城市| 永丰县| 泰州市| 天祝| 雅安市| 福建省| 醴陵市| 扬州市| 大邑县|